The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
根据磨蚀理论,设计了一种含Ce耐磨耐蚀合金,用SEM、X ray对磨损形貌进行了观察分析。结果表明,加入Ce可以获得致密化程度较高、分布均匀的组织,明显增加了合金碳化物中铬的含量,使碳化物的显微硬度提高,表面有CeFe7新相产生,并引起奥氏...根据磨蚀理论,设计了一种含Ce耐磨耐蚀合金,用SEM、X ray对磨损形貌进行了观察分析。结果表明,加入Ce可以获得致密化程度较高、分布均匀的组织,明显增加了合金碳化物中铬的含量,使碳化物的显微硬度提高,表面有CeFe7新相产生,并引起奥氏体、铁素体含量的增加,改变了试样表面的微观结构,从而提高了Fe Ni Cr合金的耐磨耐蚀性能。展开更多
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
文摘根据磨蚀理论,设计了一种含Ce耐磨耐蚀合金,用SEM、X ray对磨损形貌进行了观察分析。结果表明,加入Ce可以获得致密化程度较高、分布均匀的组织,明显增加了合金碳化物中铬的含量,使碳化物的显微硬度提高,表面有CeFe7新相产生,并引起奥氏体、铁素体含量的增加,改变了试样表面的微观结构,从而提高了Fe Ni Cr合金的耐磨耐蚀性能。