目的针对LCK(local correntropy-based K-means)模型对初始轮廓敏感的问题,提出了新的基于全局和局部相关熵的GLCK(global and local correntropy-based K-means)动态组合模型。方法首先将相关熵准则引入到CV(Chan-Vese)模型中,得到新...目的针对LCK(local correntropy-based K-means)模型对初始轮廓敏感的问题,提出了新的基于全局和局部相关熵的GLCK(global and local correntropy-based K-means)动态组合模型。方法首先将相关熵准则引入到CV(Chan-Vese)模型中,得到新的基于全局相关熵的GCK(global correntropy-based K-means)模型。然后,结合LCK模型,提出GLCK组合模型,并给出一种动态组合算法来优化GLCK模型。该模型分两步来完成分割:第1步,用GCK模型分割出目标的大致轮廓;第2步,将上一步得到的轮廓作为LCK模型的初始轮廓,对图像进行精确分割。结果主观上,对自然图像和人工合成图像进行分割,并同LCK模型、LBF模型以及CV模型进行对比,结果表明本文所提模型的鲁棒性比上述模型都要好;客观上,对BSD库中的两幅自然图像进行分割,并采用Jaccard相似性比率进行定量分析,准确率分别为91.37%和89.12%。结论本文算法主要适用于分割含有未知噪声及灰度分布不均匀的医学图像及结构简单的自然图像,并且分割结果对初始轮廓具有鲁棒性。展开更多
This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional...This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional Lower Order Statistics (FLOS). Unlike previously introduced FLOS-type algorithms, the new algorithm is proposed to estimate the time delay by maximizing the generalized correlation function of two observed signals needing neither prior information nor estimation of the numerical value of the stable noise's characteristic exponent. An interval for kernel selection is found for a wide range of characteristic exponent values of α-Stable distribution. Simulations show the proposed algorithm offers superior performance over the existing covariation time delay estimation, least mean p-norm time delay estimation and achieves slightly improved performance than fractional lower order covariance time delay estimation at lower signal to noise ratio when the noise is highly impulsive.展开更多
This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice fo...This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.展开更多
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filt...The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.展开更多
Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy cri...Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy criterion(MCC)instead of the minimummean square error criterion(MMSE).This innovative approach is applied to the loose coupling of the Inertial Navigation System(INS)and Ultra-Wideband(UWB).By introducing the maximum correntropy criterion,the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise,thus enhancing its adaptability to diverse environmental localization requirements.Particularly in the presence of non-Gaussian noise,especially heavy-tailed noise,the MCCUKF exhibits superior accuracy and robustness compared to the traditional UKF.The method initially generates an estimate of the predicted state and covariance matrix through the unscented transform(UT)and then recharacterizes the measurement information using a nonlinear regression method at the cost of theMCC.Subsequently,the state and covariance matrices of the filter are updated by employing the unscented transformation on the measurement equations.Moreover,to mitigate the influence of non-line-of-sight(NLOS)errors positioning accuracy,this paper proposes a k-medoid clustering algorithm based on bisection k-means(Bikmeans).This algorithm preprocesses the UWB distance measurements to yield a more precise position estimation.Simulation results demonstrate that MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems.展开更多
文摘目的针对LCK(local correntropy-based K-means)模型对初始轮廓敏感的问题,提出了新的基于全局和局部相关熵的GLCK(global and local correntropy-based K-means)动态组合模型。方法首先将相关熵准则引入到CV(Chan-Vese)模型中,得到新的基于全局相关熵的GCK(global correntropy-based K-means)模型。然后,结合LCK模型,提出GLCK组合模型,并给出一种动态组合算法来优化GLCK模型。该模型分两步来完成分割:第1步,用GCK模型分割出目标的大致轮廓;第2步,将上一步得到的轮廓作为LCK模型的初始轮廓,对图像进行精确分割。结果主观上,对自然图像和人工合成图像进行分割,并同LCK模型、LBF模型以及CV模型进行对比,结果表明本文所提模型的鲁棒性比上述模型都要好;客观上,对BSD库中的两幅自然图像进行分割,并采用Jaccard相似性比率进行定量分析,准确率分别为91.37%和89.12%。结论本文算法主要适用于分割含有未知噪声及灰度分布不均匀的医学图像及结构简单的自然图像,并且分割结果对初始轮廓具有鲁棒性。
基金Supported by the Chinese National Science Foundation(No.60872122)
文摘This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional Lower Order Statistics (FLOS). Unlike previously introduced FLOS-type algorithms, the new algorithm is proposed to estimate the time delay by maximizing the generalized correlation function of two observed signals needing neither prior information nor estimation of the numerical value of the stable noise's characteristic exponent. An interval for kernel selection is found for a wide range of characteristic exponent values of α-Stable distribution. Simulations show the proposed algorithm offers superior performance over the existing covariation time delay estimation, least mean p-norm time delay estimation and achieves slightly improved performance than fractional lower order covariance time delay estimation at lower signal to noise ratio when the noise is highly impulsive.
文摘This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.
基金supported in part by the National Key R&D Program of China (2022ZD0116401,2022ZD0116400)the National Natural Science Foundation of China (62203016,U2241214,T2121002,62373008,61933007)+2 种基金the China Postdoctoral Science Foundation (2021TQ0009)the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
基金supported by the National Natural Science Foundation of China under Grant Nos.62273083 and 61803077Natural Science Foundation of Hebei Province under Grant No.F2020501012.
文摘Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy criterion(MCC)instead of the minimummean square error criterion(MMSE).This innovative approach is applied to the loose coupling of the Inertial Navigation System(INS)and Ultra-Wideband(UWB).By introducing the maximum correntropy criterion,the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise,thus enhancing its adaptability to diverse environmental localization requirements.Particularly in the presence of non-Gaussian noise,especially heavy-tailed noise,the MCCUKF exhibits superior accuracy and robustness compared to the traditional UKF.The method initially generates an estimate of the predicted state and covariance matrix through the unscented transform(UT)and then recharacterizes the measurement information using a nonlinear regression method at the cost of theMCC.Subsequently,the state and covariance matrices of the filter are updated by employing the unscented transformation on the measurement equations.Moreover,to mitigate the influence of non-line-of-sight(NLOS)errors positioning accuracy,this paper proposes a k-medoid clustering algorithm based on bisection k-means(Bikmeans).This algorithm preprocesses the UWB distance measurements to yield a more precise position estimation.Simulation results demonstrate that MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems.