A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorob...A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorobutyl methacrylate (HFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), transmission electron microscopy (TEM), particle size analysis, X-ray photoelectron spectroscopy (XPS), contact angle (CA), differential scanning calorimetry (DSC) and thermogravimetry (TG) analysis. The FTIR and TEM results showed that HFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a core-shell structure and a narrow particle size distribution. XPS and CA analysis revealed that a gradient concentration of fluorine existed in the depth profile of fluorine-containing emulsion film which was richer in fluorine and more hydrophobic in one side. DSC and TG analysis also showed that a clear core-shell structure existed in the fluorine-containing emulsion particles, and their film showed higher thermal stability than that of fluorine-free emulsion.展开更多
Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell...Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell magnetic metal–carbon composite is rationally constructed for the first time via a fast metal–organic frameworksbased ligand exchange strategy followed by a carbonization treatment with melamine.Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod(Mo2N@CoFe@C/CNT),constructing a special multi-dimension hierarchical MA material.Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite,which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell.Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of−53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz.The Mo2N@CoFe@C/CNT composites hold the following advantages:(1)hierarchical core–shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization,(2)unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss,(3)highly dispersed magnetic CoFe nanoparticles within“tubes on rods”matrix build multi-scale magnetic coupling network and reinforce magnetic response capability,confirmed by the off-axis electron holography.展开更多
Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical propert...Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical properties of MXene fibers because of the high rigidity of MXene sheets and insufficient inter-sheet interactions.Herein,we demonstrate a core-shell wet-spinning methodology for fabricating highly conductive,super-tough,ultra-strong,and environmentally stable Ti_(3)C_(2)T_(x) MXene-based core-shell fibers with conductive MXene cores and tough aramid nanofiber(ANF)shells.The highly orientated and low-defect structure endows the ANF@MXene core-shell fiber with supertoughness of~48.1 MJ m^(-3),high strength of~502.9 MPa,and high conductivity of~3.0×10^(5)S m^(-1).The super-tough and conductive ANF@MXene fibers can be woven into textiles,exhibiting an excellent electromagnetic interference(EMI)shielding efficiency of 83.4 dB at a small thickness of 213μm.Importantly,the protection of the ANF shells provides the fibers with satisfactory cyclic stability under dynamic stretching and bending,and excellent resistance to acid,alkali,seawater,cryogenic and high temperatures,and fire.The oxidation resistance of the fibers is demonstrated by their wellmaintained EMI shielding performances.The multifunctional core-shell fibers would be highly promising in the fields of EMI shielding textiles,wearable electronics and aerospace.展开更多
This paper explores the capability of the“surface-protected etching”process for the creation of rattle-type SiO_(2)@void@SiO_(2) colloidal structures featuring a mesoporous silica shell and a mesoporous movable sili...This paper explores the capability of the“surface-protected etching”process for the creation of rattle-type SiO_(2)@void@SiO_(2) colloidal structures featuring a mesoporous silica shell and a mesoporous movable silica core.The surface-protected etching process involves stabilization of the particle surface using a polymer ligand,and then selective etching of the interior to form hollow structures.In this paper,this strategy has been extended to the formation of rattle-like structures by etching SiO_(2)@SiO_(2) core shell particles which are synthesized by a two-step sol gel process.The key is to introduce a protecting polymer of polyvinylpyrrolidone(PVP)to the surface of both core and shell in order to tailor their relative stability against chemical etching.Upon reacting with NaOH,the outer layer silica becomes a hollow shell as only the surface layer is protected by PVP and the interior is removed,while the core remains its original size thanks to the protection of PVP on its surface.This process can be carried out at room temperature without the need of additional templates or complicated heterogeneous coating procedures.The etching process also results in the rattle-type colloids having mesoscale pores with two distinct average sizes.In our demonstration of a model drug delivery process,such mesoporous structures show an interesting two-step elution profile which is believed to be related to the unique porous rattle structures.展开更多
To address the worldwide energy challenges,advanced energy storage and conversion systems with high comprehensive performances,as the promising technologies,are inevitably required on a timely basis.The performance of...To address the worldwide energy challenges,advanced energy storage and conversion systems with high comprehensive performances,as the promising technologies,are inevitably required on a timely basis.The performance of these energy systems is intimately dependent on the properties of their electrodes.In addition to the electrode materials selection and their compositional optimization,materials fabrication with the designed nanostructure also provides significant benefits for their performances.In the past decade,considerable efforts have been made to promote the search for multidimensional nanostructures containing both onedimensional(1D)and two-dimensional(2D)nanostructures in synergy,namely,1D-2D synergized nanostructures.By developing the freestanding electrodes with such unique nanoarchitectures,the structural features and electroactivities of each component can be manifested,where the synergistic properties among them can be simultaneously obtained for further enhanced properties,such as the increased number of active sites,fast electronic/ionic transport,and so forth.This review overviews the state-of-the-art on the 1D-2D synergized nanostructures,which can be broadly divided into three groups,namely,core/shell,cactus-like,and sandwich-like nanostructures.For each category,we introduce them from the aspects of structural features,fabrication methodologies to their successful applications in different types of energy storage/conversion devices,including rechargeable batteries,supercapacitors,water splitting,and so forth.Finally,the main challenges faced by and perspectives on the 1D-2D synergized nanostructures are discussed.展开更多
We describe a simple one-pot thermal decomposition method for the production of a stable colloidal suspension of narrowly dispersed superparamagnetic Fe_(3)O_(4)-Ag core-shell nanostructures.These biocompatible nanost...We describe a simple one-pot thermal decomposition method for the production of a stable colloidal suspension of narrowly dispersed superparamagnetic Fe_(3)O_(4)-Ag core-shell nanostructures.These biocompatible nanostructures are highly toxic to microorganisms.Antimicrobial activity studies were carried out on both Gram negative(Escherichia coli and Proteus vulgaris)and Gram positive(Bacillus megaterium and Staphylococcus aureus)bacterial strains.Efforts have been made to understand the underlying molecular mechanism of such antibacterial actions.The effect of the core-shell nanostructures on Gram negative strains was found to be better than that observed for silver nanoparticles.The minimum inhibitory concentration(MIC)values of these nanostructures were found to be considerably lower than those of commercially available antibiotics.We attribute this enhanced antibacterial effect of the nanostructures to their stability as a colloid in the medium,which modulates the phosphotyrosine profile of the bacterial proteins and arrests bacterial growth.We also demonstrate that these core-shell nanostructures can be removed from the medium by means of an external magnetic field which provides a mechanism to prevent uncontrolled waste disposal of these potentially hazardous nanostructures.展开更多
基金Supported by the National Natural Science Foundation of China (20476035, 20846003).
文摘A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorobutyl methacrylate (HFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), transmission electron microscopy (TEM), particle size analysis, X-ray photoelectron spectroscopy (XPS), contact angle (CA), differential scanning calorimetry (DSC) and thermogravimetry (TG) analysis. The FTIR and TEM results showed that HFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a core-shell structure and a narrow particle size distribution. XPS and CA analysis revealed that a gradient concentration of fluorine existed in the depth profile of fluorine-containing emulsion film which was richer in fluorine and more hydrophobic in one side. DSC and TG analysis also showed that a clear core-shell structure existed in the fluorine-containing emulsion particles, and their film showed higher thermal stability than that of fluorine-free emulsion.
基金This work was supported by the Ministry of Science and Technology of China(973 Project No.2018YFA0209102)the National Natural Science Foundation of China(11727807,51725101,51672050,61790581).
文摘Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell magnetic metal–carbon composite is rationally constructed for the first time via a fast metal–organic frameworksbased ligand exchange strategy followed by a carbonization treatment with melamine.Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod(Mo2N@CoFe@C/CNT),constructing a special multi-dimension hierarchical MA material.Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite,which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell.Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of−53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz.The Mo2N@CoFe@C/CNT composites hold the following advantages:(1)hierarchical core–shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization,(2)unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss,(3)highly dispersed magnetic CoFe nanoparticles within“tubes on rods”matrix build multi-scale magnetic coupling network and reinforce magnetic response capability,confirmed by the off-axis electron holography.
基金Financial support from the National Natural Science Foundation of China(51922020,52090034)the Fundamental Research Funds for the Central Universities(BHYC1707B,XK1802-2)。
文摘Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical properties of MXene fibers because of the high rigidity of MXene sheets and insufficient inter-sheet interactions.Herein,we demonstrate a core-shell wet-spinning methodology for fabricating highly conductive,super-tough,ultra-strong,and environmentally stable Ti_(3)C_(2)T_(x) MXene-based core-shell fibers with conductive MXene cores and tough aramid nanofiber(ANF)shells.The highly orientated and low-defect structure endows the ANF@MXene core-shell fiber with supertoughness of~48.1 MJ m^(-3),high strength of~502.9 MPa,and high conductivity of~3.0×10^(5)S m^(-1).The super-tough and conductive ANF@MXene fibers can be woven into textiles,exhibiting an excellent electromagnetic interference(EMI)shielding efficiency of 83.4 dB at a small thickness of 213μm.Importantly,the protection of the ANF shells provides the fibers with satisfactory cyclic stability under dynamic stretching and bending,and excellent resistance to acid,alkali,seawater,cryogenic and high temperatures,and fire.The oxidation resistance of the fibers is demonstrated by their wellmaintained EMI shielding performances.The multifunctional core-shell fibers would be highly promising in the fields of EMI shielding textiles,wearable electronics and aerospace.
文摘This paper explores the capability of the“surface-protected etching”process for the creation of rattle-type SiO_(2)@void@SiO_(2) colloidal structures featuring a mesoporous silica shell and a mesoporous movable silica core.The surface-protected etching process involves stabilization of the particle surface using a polymer ligand,and then selective etching of the interior to form hollow structures.In this paper,this strategy has been extended to the formation of rattle-like structures by etching SiO_(2)@SiO_(2) core shell particles which are synthesized by a two-step sol gel process.The key is to introduce a protecting polymer of polyvinylpyrrolidone(PVP)to the surface of both core and shell in order to tailor their relative stability against chemical etching.Upon reacting with NaOH,the outer layer silica becomes a hollow shell as only the surface layer is protected by PVP and the interior is removed,while the core remains its original size thanks to the protection of PVP on its surface.This process can be carried out at room temperature without the need of additional templates or complicated heterogeneous coating procedures.The etching process also results in the rattle-type colloids having mesoscale pores with two distinct average sizes.In our demonstration of a model drug delivery process,such mesoporous structures show an interesting two-step elution profile which is believed to be related to the unique porous rattle structures.
基金National University of Singapore,Grant/Award Number:MOE2016-T2-2-138the Centre for Advanced 2D Materials。
文摘To address the worldwide energy challenges,advanced energy storage and conversion systems with high comprehensive performances,as the promising technologies,are inevitably required on a timely basis.The performance of these energy systems is intimately dependent on the properties of their electrodes.In addition to the electrode materials selection and their compositional optimization,materials fabrication with the designed nanostructure also provides significant benefits for their performances.In the past decade,considerable efforts have been made to promote the search for multidimensional nanostructures containing both onedimensional(1D)and two-dimensional(2D)nanostructures in synergy,namely,1D-2D synergized nanostructures.By developing the freestanding electrodes with such unique nanoarchitectures,the structural features and electroactivities of each component can be manifested,where the synergistic properties among them can be simultaneously obtained for further enhanced properties,such as the increased number of active sites,fast electronic/ionic transport,and so forth.This review overviews the state-of-the-art on the 1D-2D synergized nanostructures,which can be broadly divided into three groups,namely,core/shell,cactus-like,and sandwich-like nanostructures.For each category,we introduce them from the aspects of structural features,fabrication methodologies to their successful applications in different types of energy storage/conversion devices,including rechargeable batteries,supercapacitors,water splitting,and so forth.Finally,the main challenges faced by and perspectives on the 1D-2D synergized nanostructures are discussed.
基金the Department of Science and Technology(DST)New Delhi,India through the Ramanna Fellowship Scheme(No.SR/S2/RFCMP-01/2005)+2 种基金One of the Authors(A.K.V)is thankful to DST,New Delhi,for the FTPYS projectThe authors are also grateful to the Microbiology Department of Sir.P.P.Institute of Science,Bhavnagar University,Bhavnagar,for providing the culturesSpecial thanks are due to Dr.D.Srivastava,Scientist,CS&MCRI,Bhavnagar,for his help in TEM measurements.
文摘We describe a simple one-pot thermal decomposition method for the production of a stable colloidal suspension of narrowly dispersed superparamagnetic Fe_(3)O_(4)-Ag core-shell nanostructures.These biocompatible nanostructures are highly toxic to microorganisms.Antimicrobial activity studies were carried out on both Gram negative(Escherichia coli and Proteus vulgaris)and Gram positive(Bacillus megaterium and Staphylococcus aureus)bacterial strains.Efforts have been made to understand the underlying molecular mechanism of such antibacterial actions.The effect of the core-shell nanostructures on Gram negative strains was found to be better than that observed for silver nanoparticles.The minimum inhibitory concentration(MIC)values of these nanostructures were found to be considerably lower than those of commercially available antibiotics.We attribute this enhanced antibacterial effect of the nanostructures to their stability as a colloid in the medium,which modulates the phosphotyrosine profile of the bacterial proteins and arrests bacterial growth.We also demonstrate that these core-shell nanostructures can be removed from the medium by means of an external magnetic field which provides a mechanism to prevent uncontrolled waste disposal of these potentially hazardous nanostructures.