Copper ions were implanted into austenitic stainless steel (SS) by metal vapor vacuum arc with a energy of 100 keV and an ions dose range of (0.5-8.0)× 10^17 cm^-2. The Cu-implanted SS was annealed in an Ar a...Copper ions were implanted into austenitic stainless steel (SS) by metal vapor vacuum arc with a energy of 100 keV and an ions dose range of (0.5-8.0)× 10^17 cm^-2. The Cu-implanted SS was annealed in an Ar atmosphere furnace. Glancing X-ray diffraction (GXRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES) were used to reveal the phase compositions, microstructures, and concentration profiles of copper ions in the implanted layer. The results show that the antibacterial property of Cu-implanted SS is attributed to Cu9.9Fe0.1, which precipitated as needles. The depth of copper in Cu-implanted SS with annealing treatment is greater than that in Cu-implanted SS without annealing treatment, which improves the antibacterial property against S. aureus. The salt wetting-drying combined cyclic test was used to evaluate the corrosion-resistance of antibacterial SS, and the results reveal that the antibacterial SS has a level of corrosion-resistance equivalent to that of un-implanted SS.展开更多
Antibacterial activity of AISI420 stainless steel (SS) implanted by copper was investigated. Ions extracted from a metal vapor vacuum arc (MEVVA) are sourced with 100keV energy and a dose range from 0.2×1017 to 2...Antibacterial activity of AISI420 stainless steel (SS) implanted by copper was investigated. Ions extracted from a metal vapor vacuum arc (MEVVA) are sourced with 100keV energy and a dose range from 0.2×1017 to 2.0×1017ions·cm-2. The saturation dose of Cu implantation in AISI420 SS and Cu surface concentration were calculated at the energy of 100keV. The effect of dose on the antibacterial activity was analyzed. Results of antibacterial test show that the saturation dose is the optimum implantation dose for best antibacterial activity, which is above 99% against both Escherichia coli and Staphylococcus aureus. Novel phases such as Fe4Cu3 and Cu9.9Fe0.1 were found in the implanted layer by glancing angle X-ray diffraction (GXRD). The antibacterial activity of AISI420 SS attributes to Cu-contained phase.展开更多
We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions,followed by annealing at 950?C in vacuum. Raman spectroscopy reveals IG/I2 Dvalues varying from 1.55 to 2...We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions,followed by annealing at 950?C in vacuum. Raman spectroscopy reveals IG/I2 Dvalues varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis.展开更多
Copper ion implantation and deposition technique was applied as a pretreatment method for low temperature joining of silica ceramic ( SiO2 ) and copper alloy. The effect of copper ion implantation and deposition par...Copper ion implantation and deposition technique was applied as a pretreatment method for low temperature joining of silica ceramic ( SiO2 ) and copper alloy. The effect of copper ion implantation and deposition parameters on the microstructures and mechanical behavior of the soldering joints was investigated by scanning electron microscope (SEM) , X- ray diffraction ( XRD ) and shearing test. The copper implantation depth was about 90 nm with peak concentration of 70% for the SiO2 sample implanted for 90 rain. If copper film was deposited for 4 rain using magnetron sputtering, copper layer with thickness of 150 nm and peak concentration of 80% was obtained. After pretreatment of ion implantation and deposition, SiO2 and copper were joined successfully at low temperature directly using SnPb solder. The SnPb solder filling ratio along joining seams was up to 100% without defects with smooth soldering toes. With the increase of implantation dose, the shear strength of the Si02/Cu joints increases accordingly. After a special pretreatment on SiO2 ( Cu implantation for 30min, following Cu deposition for 4 rain, then Cu implantation for 60 rain and finally Cu deposition for 120 min) , a maximum soldering strength of 22 MPa was achieved, and the soldering joints fractured at the SiO2 base material.展开更多
In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, usin...In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV, The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potcntiodynamic polarization technique was used to evaluate the aqueous corrosion resistance of implanted ZIRLO alloy in a 1 mol/L H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of ZIRLO alloy implanted with copper ions when the fluence is 5×10^16 ions/cm^2. When the fluence is 1×10^16 or 1×10^17 ions/cm^2, the corrosion resistance of implanted sanaples was bad. Finally, the mechanism of the corrosion behavior of copper-implanted ZIRLO alloy was discussed.展开更多
基金supported by the National Natural Science Foundation of China (No.50101009)
文摘Copper ions were implanted into austenitic stainless steel (SS) by metal vapor vacuum arc with a energy of 100 keV and an ions dose range of (0.5-8.0)× 10^17 cm^-2. The Cu-implanted SS was annealed in an Ar atmosphere furnace. Glancing X-ray diffraction (GXRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES) were used to reveal the phase compositions, microstructures, and concentration profiles of copper ions in the implanted layer. The results show that the antibacterial property of Cu-implanted SS is attributed to Cu9.9Fe0.1, which precipitated as needles. The depth of copper in Cu-implanted SS with annealing treatment is greater than that in Cu-implanted SS without annealing treatment, which improves the antibacterial property against S. aureus. The salt wetting-drying combined cyclic test was used to evaluate the corrosion-resistance of antibacterial SS, and the results reveal that the antibacterial SS has a level of corrosion-resistance equivalent to that of un-implanted SS.
基金This work was supported by the National Natural Science Foundation of China(No.50101009)
文摘Antibacterial activity of AISI420 stainless steel (SS) implanted by copper was investigated. Ions extracted from a metal vapor vacuum arc (MEVVA) are sourced with 100keV energy and a dose range from 0.2×1017 to 2.0×1017ions·cm-2. The saturation dose of Cu implantation in AISI420 SS and Cu surface concentration were calculated at the energy of 100keV. The effect of dose on the antibacterial activity was analyzed. Results of antibacterial test show that the saturation dose is the optimum implantation dose for best antibacterial activity, which is above 99% against both Escherichia coli and Staphylococcus aureus. Novel phases such as Fe4Cu3 and Cu9.9Fe0.1 were found in the implanted layer by glancing angle X-ray diffraction (GXRD). The antibacterial activity of AISI420 SS attributes to Cu-contained phase.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11105100,11205116,and 11375135)the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China(Grant No.AWJ-M13-03)
文摘We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions,followed by annealing at 950?C in vacuum. Raman spectroscopy reveals IG/I2 Dvalues varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis.
文摘Copper ion implantation and deposition technique was applied as a pretreatment method for low temperature joining of silica ceramic ( SiO2 ) and copper alloy. The effect of copper ion implantation and deposition parameters on the microstructures and mechanical behavior of the soldering joints was investigated by scanning electron microscope (SEM) , X- ray diffraction ( XRD ) and shearing test. The copper implantation depth was about 90 nm with peak concentration of 70% for the SiO2 sample implanted for 90 rain. If copper film was deposited for 4 rain using magnetron sputtering, copper layer with thickness of 150 nm and peak concentration of 80% was obtained. After pretreatment of ion implantation and deposition, SiO2 and copper were joined successfully at low temperature directly using SnPb solder. The SnPb solder filling ratio along joining seams was up to 100% without defects with smooth soldering toes. With the increase of implantation dose, the shear strength of the Si02/Cu joints increases accordingly. After a special pretreatment on SiO2 ( Cu implantation for 30min, following Cu deposition for 4 rain, then Cu implantation for 60 rain and finally Cu deposition for 120 min) , a maximum soldering strength of 22 MPa was achieved, and the soldering joints fractured at the SiO2 base material.
基金This work was financially supported by the National Natural Science Foundation of China (No.50501011), the Ministry of Science andTechnology of China for Research Founding (MSTC No.G 2000067207-1), and the Postdoctoral Research Foundation of China (37thbatch, No.2005037079).
文摘In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV, The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potcntiodynamic polarization technique was used to evaluate the aqueous corrosion resistance of implanted ZIRLO alloy in a 1 mol/L H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of ZIRLO alloy implanted with copper ions when the fluence is 5×10^16 ions/cm^2. When the fluence is 1×10^16 or 1×10^17 ions/cm^2, the corrosion resistance of implanted sanaples was bad. Finally, the mechanism of the corrosion behavior of copper-implanted ZIRLO alloy was discussed.