A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing...This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.展开更多
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
基金supported by the National Natural Science Foundation of China under Grant No.61673058the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization under Grant No.U1609214
文摘This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.