Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140-85 Ma. This extension resulted in widespread re-melting of the Dabie b...Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140-85 Ma. This extension resulted in widespread re-melting of the Dabie basement, intense volcanic activities in North Huaiyang and the formation of fault-controlled depressions in the Hefei basin. This thermal doming extension can be further divided into two consecutive evolving stages, i.e. the intensifying stage (140-105 Ma) and the declining stage (105-85 Ma). In the first stage (140-105 Ma), the thermal doming mainly was concentrated in the Dabie block, and to a less degree, in the Hongan block. The thermal doming structure of the Dabie block is configured with Macheng-Yuexi thermal axis, Yuexi/Luotian thermal cores and their downslide flanks. The orientation of thermal axis is dominantly parallel to the strike of orogen, and UHP/HP units together with metamorphic rocks of North Huaiyang constitute the downslide flanks. The Yuexi core differs from the Luotian core in both the intensity and the shaping time. To some extent, the Hongan block can be regarded as part of downslide systems of the Dabie doming structure. The doming process is characterized by thermal-center's migration along the Macheng-Yuexi thermal axis; consequently, it is speculated to be attributed to the convective removal of thickened orogenic root, which is a process characterized by intermittance, migration, large-scale and differentiation. During the declining stage (105-85 Ma), the dome- shaped figure still structurally existed in the Dabie orogen, but orogenic units cooled remarkably slow and magmatic activities stagnated gradually. Study on the thermal doming of Dabieshan Mountains can thus provide detailed constraints on the major tectonic problems such as the UHP/HP exhumation model, the boundary between North Dabie and South Dabie, and the orogenesis mechanism.展开更多
The effect of temperature variation owing to the cooling pattern (CP) on the microstructural evolution was investigated by establishing a thermomechanical coupled FE (finite element) model. A set of constitutive e...The effect of temperature variation owing to the cooling pattern (CP) on the microstructural evolution was investigated by establishing a thermomechanical coupled FE (finite element) model. A set of constitutive equations of phase transformation was implanted into the commercial FE solver MARC through the user defined subroutine CR- PLAW, and the temperature field was calculated by another user defined subroutine FILM. The results show that the final mierostructure is completely bainite phase for CP one, 98% of bainite phase and 2% of ferrite phase for CP two, and 55% of bainite phase, 35% of pearlite phase and 10% of ferrite phase for CP three.展开更多
The effects of quenching temperature, cooling pattern, temper temperature andtemper times on the structure and properti-es of high speed steel (HSS) rolls have beeninvestigated. The results show that, when the quenchi...The effects of quenching temperature, cooling pattern, temper temperature andtemper times on the structure and properti-es of high speed steel (HSS) rolls have beeninvestigated. The results show that, when the quenching temperature is lower than 1050℃ thehardness of HSS increases with the quenching temperature increasing in oil cooling, but when thequenching temperature exceeds 1100℃ the hardness decreases. In the conditions of salt bath coolingand air cooling, the effect of quenching temperature on the hardness is similar to the above law,but the quenching temperature obtaining the highest hardness is higher than that in oil cooling.When the temper temperature below 350℃ the hardness of HSS has a little change, when above 475℃the hardness will increase with the temper temperature increasing, and the highest hardness isobtained at 525℃. When the temper temperature continues to increase, the hardness decreases. Twicetemper has little effect on the hardness, but three times temper decreases the hardness. HSS in aircooling has lower hardenability, oil cooling can easily produce crackle, and HSS quenching in saltbath has high harde-nability and excellent wear resistance.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 49572100) the Foundation of the Education Ministry of China for University Key Teachers.
文摘Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140-85 Ma. This extension resulted in widespread re-melting of the Dabie basement, intense volcanic activities in North Huaiyang and the formation of fault-controlled depressions in the Hefei basin. This thermal doming extension can be further divided into two consecutive evolving stages, i.e. the intensifying stage (140-105 Ma) and the declining stage (105-85 Ma). In the first stage (140-105 Ma), the thermal doming mainly was concentrated in the Dabie block, and to a less degree, in the Hongan block. The thermal doming structure of the Dabie block is configured with Macheng-Yuexi thermal axis, Yuexi/Luotian thermal cores and their downslide flanks. The orientation of thermal axis is dominantly parallel to the strike of orogen, and UHP/HP units together with metamorphic rocks of North Huaiyang constitute the downslide flanks. The Yuexi core differs from the Luotian core in both the intensity and the shaping time. To some extent, the Hongan block can be regarded as part of downslide systems of the Dabie doming structure. The doming process is characterized by thermal-center's migration along the Macheng-Yuexi thermal axis; consequently, it is speculated to be attributed to the convective removal of thickened orogenic root, which is a process characterized by intermittance, migration, large-scale and differentiation. During the declining stage (105-85 Ma), the dome- shaped figure still structurally existed in the Dabie orogen, but orogenic units cooled remarkably slow and magmatic activities stagnated gradually. Study on the thermal doming of Dabieshan Mountains can thus provide detailed constraints on the major tectonic problems such as the UHP/HP exhumation model, the boundary between North Dabie and South Dabie, and the orogenesis mechanism.
文摘The effect of temperature variation owing to the cooling pattern (CP) on the microstructural evolution was investigated by establishing a thermomechanical coupled FE (finite element) model. A set of constitutive equations of phase transformation was implanted into the commercial FE solver MARC through the user defined subroutine CR- PLAW, and the temperature field was calculated by another user defined subroutine FILM. The results show that the final mierostructure is completely bainite phase for CP one, 98% of bainite phase and 2% of ferrite phase for CP two, and 55% of bainite phase, 35% of pearlite phase and 10% of ferrite phase for CP three.
文摘The effects of quenching temperature, cooling pattern, temper temperature andtemper times on the structure and properti-es of high speed steel (HSS) rolls have beeninvestigated. The results show that, when the quenching temperature is lower than 1050℃ thehardness of HSS increases with the quenching temperature increasing in oil cooling, but when thequenching temperature exceeds 1100℃ the hardness decreases. In the conditions of salt bath coolingand air cooling, the effect of quenching temperature on the hardness is similar to the above law,but the quenching temperature obtaining the highest hardness is higher than that in oil cooling.When the temper temperature below 350℃ the hardness of HSS has a little change, when above 475℃the hardness will increase with the temper temperature increasing, and the highest hardness isobtained at 525℃. When the temper temperature continues to increase, the hardness decreases. Twicetemper has little effect on the hardness, but three times temper decreases the hardness. HSS in aircooling has lower hardenability, oil cooling can easily produce crackle, and HSS quenching in saltbath has high harde-nability and excellent wear resistance.