The paper produces new versions of the minimax theorem based on original conditions. Moreover, we investigate not only the sufficiency, but also the necessity of such conditions. The proofs are very simple and preclud...The paper produces new versions of the minimax theorem based on original conditions. Moreover, we investigate not only the sufficiency, but also the necessity of such conditions. The proofs are very simple and preclude any topological technique.展开更多
本文给出一个非线性结构的极小极大定理.设X是一个紧(Hausdorff)空间,是(X)的一个子集.如果对某个s∈(0,1),X关于是s-相似凹且对所有t∈(1/2,1),关于X是t-凸的.则inf sup_xf(x)=sup_xinf f(x). 我们的结果是Fan Ky,Konig H,Geraghty M A...本文给出一个非线性结构的极小极大定理.设X是一个紧(Hausdorff)空间,是(X)的一个子集.如果对某个s∈(0,1),X关于是s-相似凹且对所有t∈(1/2,1),关于X是t-凸的.则inf sup_xf(x)=sup_xinf f(x). 我们的结果是Fan Ky,Konig H,Geraghty M A and Lin Bor-Luh相应结果的推广.展开更多
文摘The paper produces new versions of the minimax theorem based on original conditions. Moreover, we investigate not only the sufficiency, but also the necessity of such conditions. The proofs are very simple and preclude any topological technique.
文摘本文给出一个非线性结构的极小极大定理.设X是一个紧(Hausdorff)空间,是(X)的一个子集.如果对某个s∈(0,1),X关于是s-相似凹且对所有t∈(1/2,1),关于X是t-凸的.则inf sup_xf(x)=sup_xinf f(x). 我们的结果是Fan Ky,Konig H,Geraghty M A and Lin Bor-Luh相应结果的推广.
基金supported by the National Natural Science Foundation of China(No.10871216)Natural Science Foundation of CQ(Nos.2008BB0346 and KJ080404)the Excellent Young Teachers Program of Chongqing Jiaotong University,Chongqing,China