The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility...The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility problem.Compared with the existing accelerated methods for solving the problem,the inertial technique employs a parameter sequence and two previous iterations to get the next iteration and hence improves the flexibility of the algorithm.Theoretical asymptotic convergence results are presented under some suitable conditions.Numerical simulations illustrate that the new methods have better convergence than the general projection methods.The presented algorithms are inspired by the inertial proximal point algorithm for finding zeros of a maximal monotone operator.展开更多
In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techn...In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techniques which reduce the oscillation of the corresponding sequence.To prove the convergence in a simply way,we transmit the parallel algorithm in the original space to a sequential one in a newly constructed product space.Thus,the convergence of the parallel algorithm is derived with the help of the sequential one under some suitable conditions.Numerical results show that the new algorithm has better convergence than the existing algorithms.展开更多
An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is est...An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is established.Moreover,compared with the existing projection hyperplanes methods with subgradient,the proposed hyperplanes are interactive with ε,and their ranges are more larger.The convergence of the proposed algorithm is given under some mild conditions,and the validity of the algorithm is proved by the numerical test.展开更多
The existing methods of projection for solving convex feasibility problem may lead to slow conver- gence when the sequences enter some narrow"corridor" between two or more convex sets. In this paper, we apply a tech...The existing methods of projection for solving convex feasibility problem may lead to slow conver- gence when the sequences enter some narrow"corridor" between two or more convex sets. In this paper, we apply a technique that may interrupt the monotonity of the constructed sequence to the sequential subgradient pro- jection algorithm to construct a nommonotonous sequential subgradient projection algorithm for solving convex feasibility problem, which can leave such corridor by taking a big step at different steps during the iteration. Under some suitable conditions, the convergence is proved.We also compare the numerical performance of the proposed algorithm with that of the monotonous algorithm by numerical experiments.展开更多
基金supported by National Science Foundation of China(under grant:10671126)Shanghai leading academic discipline project(under grant:S30501)+2 种基金the Innovation Fund Project for Graduate Student of Shanghai(JWCXSL1001)Youth Foundation of Henan Polytechnic University(Q2009-3)Applied Mathematics Provincial-level Key Discipline of Henan Province,Operations Research and Control Theory Key Discipline of Henan Polytechnic Univrsity
基金supported by the National Natural Science Foundation of China (11171221)Shanghai Municipal Committee of Science and Technology (10550500800)+1 种基金Basic and Frontier Research Program of Science and Technology Department of Henan Province (112300410277,082300440150)China Coal Industry Association Scientific and Technical Guidance to Project (MTKJ-2011-403)
文摘The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility problem.Compared with the existing accelerated methods for solving the problem,the inertial technique employs a parameter sequence and two previous iterations to get the next iteration and hence improves the flexibility of the algorithm.Theoretical asymptotic convergence results are presented under some suitable conditions.Numerical simulations illustrate that the new methods have better convergence than the general projection methods.The presented algorithms are inspired by the inertial proximal point algorithm for finding zeros of a maximal monotone operator.
基金Supported by the NNSF of china(11171221)SuppoSed by the Shanghai Municipal Committee of Science and Technology(10550500800)
文摘In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techniques which reduce the oscillation of the corresponding sequence.To prove the convergence in a simply way,we transmit the parallel algorithm in the original space to a sequential one in a newly constructed product space.Thus,the convergence of the parallel algorithm is derived with the help of the sequential one under some suitable conditions.Numerical results show that the new algorithm has better convergence than the existing algorithms.
基金supported by the National Natural Science Foundation of China (10671126)Shanghai Leading Academic Discipline Project(S30501)
文摘An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is established.Moreover,compared with the existing projection hyperplanes methods with subgradient,the proposed hyperplanes are interactive with ε,and their ranges are more larger.The convergence of the proposed algorithm is given under some mild conditions,and the validity of the algorithm is proved by the numerical test.
基金The National Natural Science Foundation of China(11171221)the Science and Technology of Shanghai Municipal Committee(10550500800)the Leading Academic Discipline Project of Shanghai(S30501)
基金Supported by the National Science Foundation of China(No.11171221)Natural Science Foundation of Shanghai(14ZR1429200)+2 种基金Innovation Program of Shanghai Municipal Education Commission(15ZZ074)Henan Province fundation frontier projec(No.162300410226)Key Scientific research projectins of Henan Province(NO.17b120001)
文摘The existing methods of projection for solving convex feasibility problem may lead to slow conver- gence when the sequences enter some narrow"corridor" between two or more convex sets. In this paper, we apply a technique that may interrupt the monotonity of the constructed sequence to the sequential subgradient pro- jection algorithm to construct a nommonotonous sequential subgradient projection algorithm for solving convex feasibility problem, which can leave such corridor by taking a big step at different steps during the iteration. Under some suitable conditions, the convergence is proved.We also compare the numerical performance of the proposed algorithm with that of the monotonous algorithm by numerical experiments.