This paper establishes a new layered flying ad hoc networks(FANETs) system of mobile edge computing(MEC) supported by multiple UAVs,where the first layer of user UAVs can perform tasks such as area coverage, and the s...This paper establishes a new layered flying ad hoc networks(FANETs) system of mobile edge computing(MEC) supported by multiple UAVs,where the first layer of user UAVs can perform tasks such as area coverage, and the second layer of MEC UAVs are deployed as flying MEC sever for user UAVs with computing-intensive tasks. In this system, we first divide the user UAVs into multiple clusters, and transmit the tasks of the cluster members(CMs) within a cluster to its cluster head(CH). Then, we need to determine whether each CH’ tasks are executed locally or offloaded to one of the MEC UAVs for remote execution(i.e., task scheduling), and how much resources should be allocated to each CH(i.e., resource allocation), as well as the trajectories of all MEC UAVs.We formulate an optimization problem with the aim of minimizing the overall energy consumption of all user UAVs, under the constraints of task completion deadline and computing resource, which is a mixed integer non-convex problem and hard to solve. We propose an iterative algorithm by applying block coordinate descent methods. To be specific, the task scheduling between CH UAVs and MEC UAVs, computing resource allocation, and MEC UAV trajectory are alternately optimized in each iteration. For the joint task scheduling and computing resource allocation subproblem and MEC UAV trajectory subproblem, we employ branch and bound method and continuous convex approximation technique to solve them,respectively. Extensive simulation results validate the superiority of our proposed approach to several benchmarks.展开更多
A multi-shape representation approach for measuring geometrical properties of profiled fibers was presented.From closed edge chains of a fiber cross section,three evenly spaced vertices were selected to form a triangl...A multi-shape representation approach for measuring geometrical properties of profiled fibers was presented.From closed edge chains of a fiber cross section,three evenly spaced vertices were selected to form a triangle by changing the vertices' spacing,or the step length,the Triangle Area Representation(TAR)was calculated with a special determinant.The bend direction of the two consecutive lines drawn by three vertices determined the sign of the TAR.TARN and TARP were negative and positive extensions of TAR,and used to analyze concave and convex segments on the boundary.The length of TARN measured the size of concaveness.Multi-scale TARPs together with TARN can help to detect fiber conglutinations.展开更多
This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU...This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU's computational speed under the set of resource constrains.To this end,we first derive the energy consumption model of data processing,and then obtain the energy consumption model of fixed-wing UAV's flight.The optimization problem is mathematically formulated.To address the problem,we first obtain the approximate optimization problem by applying the technique of discrete linear state-space approximation,and then transform the non-convex constraints into convex by using linearization.Furthermore,a concave-convex procedure(CCCP) based algorithm is proposed in order to solve the optimization problem approximately.Numerical results show the efficacy of the proposed algorithm.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61931011in part by the Primary Research & Developement Plan of Jiangsu Province No. BE2021013-4+2 种基金in part by the National Natural Science Foundation of China under Grant No. 62072303in part by the National Postdoctoral Program for Innovative Talents of China No. BX20190202in part by the Open Project Program of the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space No. KF20202105。
文摘This paper establishes a new layered flying ad hoc networks(FANETs) system of mobile edge computing(MEC) supported by multiple UAVs,where the first layer of user UAVs can perform tasks such as area coverage, and the second layer of MEC UAVs are deployed as flying MEC sever for user UAVs with computing-intensive tasks. In this system, we first divide the user UAVs into multiple clusters, and transmit the tasks of the cluster members(CMs) within a cluster to its cluster head(CH). Then, we need to determine whether each CH’ tasks are executed locally or offloaded to one of the MEC UAVs for remote execution(i.e., task scheduling), and how much resources should be allocated to each CH(i.e., resource allocation), as well as the trajectories of all MEC UAVs.We formulate an optimization problem with the aim of minimizing the overall energy consumption of all user UAVs, under the constraints of task completion deadline and computing resource, which is a mixed integer non-convex problem and hard to solve. We propose an iterative algorithm by applying block coordinate descent methods. To be specific, the task scheduling between CH UAVs and MEC UAVs, computing resource allocation, and MEC UAV trajectory are alternately optimized in each iteration. For the joint task scheduling and computing resource allocation subproblem and MEC UAV trajectory subproblem, we employ branch and bound method and continuous convex approximation technique to solve them,respectively. Extensive simulation results validate the superiority of our proposed approach to several benchmarks.
基金Foundation for the Author of National Excellent Doctoral Dissertation of P.R.China(No.200350)
文摘A multi-shape representation approach for measuring geometrical properties of profiled fibers was presented.From closed edge chains of a fiber cross section,three evenly spaced vertices were selected to form a triangle by changing the vertices' spacing,or the step length,the Triangle Area Representation(TAR)was calculated with a special determinant.The bend direction of the two consecutive lines drawn by three vertices determined the sign of the TAR.TARN and TARP were negative and positive extensions of TAR,and used to analyze concave and convex segments on the boundary.The length of TARN measured the size of concaveness.Multi-scale TARPs together with TARN can help to detect fiber conglutinations.
基金supported in part by National Natural Science Foundation of China(Grant No.61702149,U1709220)
文摘This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU's computational speed under the set of resource constrains.To this end,we first derive the energy consumption model of data processing,and then obtain the energy consumption model of fixed-wing UAV's flight.The optimization problem is mathematically formulated.To address the problem,we first obtain the approximate optimization problem by applying the technique of discrete linear state-space approximation,and then transform the non-convex constraints into convex by using linearization.Furthermore,a concave-convex procedure(CCCP) based algorithm is proposed in order to solve the optimization problem approximately.Numerical results show the efficacy of the proposed algorithm.