The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| ...The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| {z_n } \right|^{p_n } < 1\} $ , p j > 2, j = 1,2,?, n) of ? n is discussed. The authors set up a Decomposition Theorem for such mappings. As a special case, it is proved that, for each such mapping f, the first k-terms of the homogeneous expansion of its j-th component f j , j = 1, 2, ?, n, depends only on z j , where k is the number that satisfies k < min {p 1, p 2,?, p n ≤ k + 1. When p1,p2, ... ,pn → ∞ , this derives the Decomposition Theorem of normalized biholomorphic convex mappings in the polydisc which was gotten by T.J. Suffridge in 1970.展开更多
We first estimate the containment measure of a convex domain to contain in another in a surface X of constant curvature.Then we obtain the analogue of the known Bonnesen isoperimetric inequality for convex domain in X...We first estimate the containment measure of a convex domain to contain in another in a surface X of constant curvature.Then we obtain the analogue of the known Bonnesen isoperimetric inequality for convex domain in X.Finally we strengthen the known Bonnesen isoperimetric inequality.展开更多
Let D and D' be domains in real Banach spaces of dimension at least 2. The main aim of this paper is to study certain arc distortion properties in the quasihyperbolic metric defined in real Banach spaces. In particul...Let D and D' be domains in real Banach spaces of dimension at least 2. The main aim of this paper is to study certain arc distortion properties in the quasihyperbolic metric defined in real Banach spaces. In particular, when D' is a QH inner C-uniform domain with C being a slow (or a convex domain), we investigate the following: For positive constants c, h, C, M, suppose a homeomorphism f : D → D' takes each of the 10-neargeodesics in D to (c, h)-solid in D'. Then f is C-coarsely M- Lipschitz in the quasihyperbolic metric. These are generalizations of the corresponding result obtained recently by Viiisiilg.展开更多
We discuss the higher dimensional Bonnesen-style inequalities. Though there are many Bonnesen-style inequalities for domains in the Euclidean plane R2 few results for general domain in Rn (n ≥ 3) are known. The res...We discuss the higher dimensional Bonnesen-style inequalities. Though there are many Bonnesen-style inequalities for domains in the Euclidean plane R2 few results for general domain in Rn (n ≥ 3) are known. The results obtained in this paper are for general domains, convex or non-convex, in Rn.展开更多
In this paper, we investigate rigidity and its applications to extreme points of biholomorphic convex mappings on Reinhardt domains. By introducing a version of the scaling method, we precisely construct many unbounde...In this paper, we investigate rigidity and its applications to extreme points of biholomorphic convex mappings on Reinhardt domains. By introducing a version of the scaling method, we precisely construct many unbounded convex mappings with only one in?nite discontinuity on the boundary of this domain. We also give a rigidity of these unbounded convex mappings via the Kobayashi metric and the Liouville-type theorem of entire functions. As an application we obtain a collection of extreme points for the class of normalized convex mappings. Our results extend both the rigidity of convex mappings and related extreme points from the unit ball to Reinhardt domains.展开更多
In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), ...In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), pj 〉 2, 1 ≤ j ≤ n, 0 〈 C1j 〈 C2j be constants. Define DM={z=(z1,z2,…,Zn)^T∈C^n:n∑j=1 Mj(|zj|)〈1}Then DM C^n is a convex Reinhardt domain. We give an extension theorem for a normalized biholomorphic convex mapping f : DM -→ C^n.展开更多
基金This work was supported by 973 Project, the National Natural Science Foundation of China (Grant No. 19871081) the Natural Science Foundation of Guangdong Province and Anhui Province.
文摘The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| {z_n } \right|^{p_n } < 1\} $ , p j > 2, j = 1,2,?, n) of ? n is discussed. The authors set up a Decomposition Theorem for such mappings. As a special case, it is proved that, for each such mapping f, the first k-terms of the homogeneous expansion of its j-th component f j , j = 1, 2, ?, n, depends only on z j , where k is the number that satisfies k < min {p 1, p 2,?, p n ≤ k + 1. When p1,p2, ... ,pn → ∞ , this derives the Decomposition Theorem of normalized biholomorphic convex mappings in the polydisc which was gotten by T.J. Suffridge in 1970.
基金supported by National Natural Science Foundation of China (Grant No. 10971167)
文摘We first estimate the containment measure of a convex domain to contain in another in a surface X of constant curvature.Then we obtain the analogue of the known Bonnesen isoperimetric inequality for convex domain in X.Finally we strengthen the known Bonnesen isoperimetric inequality.
基金Supported by National Natural Science Foundation of China (Grant No. 11071063), Tianyuan Foundation (Grant No. 10926068) and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 09C635)Acknowledgements The authors thank the referee very much for his (or her) careflfl reading of this paper and many useful suggestions and the support of the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hu'nan Province.
文摘Let D and D' be domains in real Banach spaces of dimension at least 2. The main aim of this paper is to study certain arc distortion properties in the quasihyperbolic metric defined in real Banach spaces. In particular, when D' is a QH inner C-uniform domain with C being a slow (or a convex domain), we investigate the following: For positive constants c, h, C, M, suppose a homeomorphism f : D → D' takes each of the 10-neargeodesics in D to (c, h)-solid in D'. Then f is C-coarsely M- Lipschitz in the quasihyperbolic metric. These are generalizations of the corresponding result obtained recently by Viiisiilg.
基金supported by National Natural Science Foundation of China (Grant No. 10971167)
文摘We discuss the higher dimensional Bonnesen-style inequalities. Though there are many Bonnesen-style inequalities for domains in the Euclidean plane R2 few results for general domain in Rn (n ≥ 3) are known. The results obtained in this paper are for general domains, convex or non-convex, in Rn.
基金supported by National Natural Science Foundation of China (Grant Nos. 11471111, 11571105 and 11671362)the Natural Science Foundation of Zhejiang Province (Grant No. LY16A010004)
文摘In this paper, we investigate rigidity and its applications to extreme points of biholomorphic convex mappings on Reinhardt domains. By introducing a version of the scaling method, we precisely construct many unbounded convex mappings with only one in?nite discontinuity on the boundary of this domain. We also give a rigidity of these unbounded convex mappings via the Kobayashi metric and the Liouville-type theorem of entire functions. As an application we obtain a collection of extreme points for the class of normalized convex mappings. Our results extend both the rigidity of convex mappings and related extreme points from the unit ball to Reinhardt domains.
基金the Natural Science Foundation of China (Grant No.10671194 and 10731080/A01010501)
文摘In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), pj 〉 2, 1 ≤ j ≤ n, 0 〈 C1j 〈 C2j be constants. Define DM={z=(z1,z2,…,Zn)^T∈C^n:n∑j=1 Mj(|zj|)〈1}Then DM C^n is a convex Reinhardt domain. We give an extension theorem for a normalized biholomorphic convex mapping f : DM -→ C^n.