In this article, we consider the continuous gas in a bounded domain ∧ of R^+ or R^d described by a Gibbsian probability measure μη∧ associated with a pair interaction φ, the inverse temperature β, the activity...In this article, we consider the continuous gas in a bounded domain ∧ of R^+ or R^d described by a Gibbsian probability measure μη∧ associated with a pair interaction φ, the inverse temperature β, the activity z 〉 0, and the boundary condition η. Define F ∫ωf(s)wA(ds). Applying the generalized Ito's formula for forward-backward martingales (see Klein et M. [5]), we obtain convex concentration inequalities for F with respect to the Gibbs measure μη∧. On the other hand, by FKG inequality on the Poisson space, we also give a new simple argument for the stochastic domination for the Gibbs measure.展开更多
Using forward-backward stochastic calculus, we prove convex concentration inequalities for some additive functionals of the solution of stochastic differential equations with jumps admitting an invariant probability m...Using forward-backward stochastic calculus, we prove convex concentration inequalities for some additive functionals of the solution of stochastic differential equations with jumps admitting an invariant probability measure. As a consequence, transportation-information inequalities are obtained and bounds on option prices for interest rate derivatives are given as an application.展开更多
文摘In this article, we consider the continuous gas in a bounded domain ∧ of R^+ or R^d described by a Gibbsian probability measure μη∧ associated with a pair interaction φ, the inverse temperature β, the activity z 〉 0, and the boundary condition η. Define F ∫ωf(s)wA(ds). Applying the generalized Ito's formula for forward-backward martingales (see Klein et M. [5]), we obtain convex concentration inequalities for F with respect to the Gibbs measure μη∧. On the other hand, by FKG inequality on the Poisson space, we also give a new simple argument for the stochastic domination for the Gibbs measure.
基金supported by National Natural Science Foundation of China (Grant No.11101040)985 project and the Fundamental Research Funds for the Central Universitiessupported by Nanyang Technological University Tier 1 (Grant No.M58110050)
文摘Using forward-backward stochastic calculus, we prove convex concentration inequalities for some additive functionals of the solution of stochastic differential equations with jumps admitting an invariant probability measure. As a consequence, transportation-information inequalities are obtained and bounds on option prices for interest rate derivatives are given as an application.