Photovoltaic(PV) power generation technology is the main renewable energy utilization technology. However, dust deposition severely affects the PV power generation efficiency and decreases the production capacity of P...Photovoltaic(PV) power generation technology is the main renewable energy utilization technology. However, dust deposition severely affects the PV power generation efficiency and decreases the production capacity of PV power plants. In this study, the factors affecting PV technology were divided into the following three types: occlusion, corrosion, and temperature rise. A dust-collecting PV model considering dust deposition and rainfall scouring was established;a PV performance index was proposed. By conducting experiments with different dust mass densities, it was found that the short-circuit current(SCC), open-circuit voltage(OCV), and PV output power of PV decreased with the increase in dust mass density. In the initial stage of dust deposition, dust exhibited the greatest effect on the performance of PV. In the later stage of dust deposition, the effect of dust deposition became stable. The initial 10 g/m^2 dust decreased the PV output power by 34%. In addition, the conversion efficiency and fill factor(FF) decreased with the increase in dust mass density;both of them were exponential functions. When the dust mass density was low(less than 30 g/m^2), the dust mass density increased by 10 g/m^2, and the conversion efficiency decreased by an average of 3.4%. Finally, by conducting economic calculations, it was found that a PV power plant where dust has not removed for one year will cause 12% loss of power generation.展开更多
Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifier...Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency(VCE) and power conversion efficiency(PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated.It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits.展开更多
基金Funds supports of National Natural Science Foundation of China (Project No. 51590911)the national key research projects (Nos. 2016YFC0700400)the key research and development program of Shaanxi Province (2018ZDCXL-SF-03-01)
文摘Photovoltaic(PV) power generation technology is the main renewable energy utilization technology. However, dust deposition severely affects the PV power generation efficiency and decreases the production capacity of PV power plants. In this study, the factors affecting PV technology were divided into the following three types: occlusion, corrosion, and temperature rise. A dust-collecting PV model considering dust deposition and rainfall scouring was established;a PV performance index was proposed. By conducting experiments with different dust mass densities, it was found that the short-circuit current(SCC), open-circuit voltage(OCV), and PV output power of PV decreased with the increase in dust mass density. In the initial stage of dust deposition, dust exhibited the greatest effect on the performance of PV. In the later stage of dust deposition, the effect of dust deposition became stable. The initial 10 g/m^2 dust decreased the PV output power by 34%. In addition, the conversion efficiency and fill factor(FF) decreased with the increase in dust mass density;both of them were exponential functions. When the dust mass density was low(less than 30 g/m^2), the dust mass density increased by 10 g/m^2, and the conversion efficiency decreased by an average of 3.4%. Finally, by conducting economic calculations, it was found that a PV power plant where dust has not removed for one year will cause 12% loss of power generation.
基金Project supported by the National Natural Science Foundation of China(Nos.61131001,61404077,61571248)the Science and Technology Fund of Zhejiang Province(No.2015C31090)+2 种基金the Natural Science Foundation of Ningbo(No.2014A610147)State Key Laboratory of ASIC&System(No.2015KF006)the K.C.Wong Magna Fund in Ningbo University
文摘Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency(VCE) and power conversion efficiency(PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated.It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits.