The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The...The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The effects of hydration and aggregate interlock on its strength are considerable. For similar binder contents, the compressive strength of the RCC is generally higher than that of the conventional concrete; however, the tensile strength of RCC may not be superior to that of the conventional concrete. Adequate tensile strength is necessary to resist fatigue cracking, particularly in pavement applications. However, the compressive strength is frequently used in assessing the quality control and quality assurance of pavements. Therefore, the relationship between the compressive and tensile strengths of the RCC should be analyzed. Unfortunately, only a few studies have been conducted on this relationship. The objective of this study is to identify the difference between the indirect tensile strengths of the RCC and those of the conventional concrete as well as develop relationship equations to evaluate the compressive and tensile strengths. In this study, regression equations are developed to estimate the indirect tensile strengths, which are known as flexural and splitting tensile strengths, using the compressive strength of the RCC. The results show that the flexural strength of the RCC is within the predicted values obtained from the conventional concrete equations for a given compressive strength. In contrast, the splitting tensile strength of the RCC is relatively lower than that of the conventional concrete for the given compressive strength.展开更多
High Performance concrete (HPC) has received increased attention in the development of infrastructure Viz., Buildings, Industrial Structures, Hydraulic Structures, Bridges and Highways etc. leading to utilization of l...High Performance concrete (HPC) has received increased attention in the development of infrastructure Viz., Buildings, Industrial Structures, Hydraulic Structures, Bridges and Highways etc. leading to utilization of large quantity of concrete. This paper presents a comprehensive coverage of High Performance concrete developments in civil engineering field. It highlights the High Performance concrete features and requirements over conventional concrete. Furthermore, recent trends with regard to High Performance Concrete development in this area are explored. This paper also includes effect of Mineral and Chemical Admixtures used to improve performance of concrete.展开更多
This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash additio...This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash addition affected the main fresh and hardened properties of these materials. It was found that the wood ash could be successfully incorporated into the conventional concrete. In particular, the wood ash addition not only accelerated the setting, but also improved the early and the 28-day compressive strength of concrete that contained the blast furnace slag. It was also observed that the wood ash could be positively added into RCC to facilitate the compaction and reduce the risk of segregation. In addition, the wood ash can be beneficially introduced into the flowable fill mixtures to facilitate flow, to alleviate bleeding and subsidence, as well as to achieve controlled strength especially when combined with the class C or the class F fly ash.展开更多
In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of thi...In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25.展开更多
This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that...This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that of a corresponding conventional concrete (CC) mix. The CC and SCC mix designs followed conventional proportioning in terms of aggregate type and content, cement content, air content, water-cementitiuos materials (w/cm) ratio, and workability. Then, using only chemical admixtures, the authors converted the CC mix to an SCC mix with all of the necessary passing, filling, flowability, and stability requirements typically found in SCC. The high fluidity was achieved with a polycarboxylate-based high-range water-reducing admixture, while the enhanced stability was accomplished with an organic, polymer-based viscosity-modifying admixture. The comparison indicated that the SCC and CC mixes had virtually identical tensile splitting strengths, flexural strengths, creep, and shrinkage. However, the SCC mix showed higher compressive strengths and fracture energies than the corresponding CC mix.展开更多
基金conducted under research project (Development of Eco-Friendly Pavements to Minimize Greenhouse Gas Emissions) funded by the Ministry of Land, Infrastructure and Transport (MOLIT) and the Korea Agency for Infrastructure Technology Advancement (KAIA)
文摘The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The effects of hydration and aggregate interlock on its strength are considerable. For similar binder contents, the compressive strength of the RCC is generally higher than that of the conventional concrete; however, the tensile strength of RCC may not be superior to that of the conventional concrete. Adequate tensile strength is necessary to resist fatigue cracking, particularly in pavement applications. However, the compressive strength is frequently used in assessing the quality control and quality assurance of pavements. Therefore, the relationship between the compressive and tensile strengths of the RCC should be analyzed. Unfortunately, only a few studies have been conducted on this relationship. The objective of this study is to identify the difference between the indirect tensile strengths of the RCC and those of the conventional concrete as well as develop relationship equations to evaluate the compressive and tensile strengths. In this study, regression equations are developed to estimate the indirect tensile strengths, which are known as flexural and splitting tensile strengths, using the compressive strength of the RCC. The results show that the flexural strength of the RCC is within the predicted values obtained from the conventional concrete equations for a given compressive strength. In contrast, the splitting tensile strength of the RCC is relatively lower than that of the conventional concrete for the given compressive strength.
文摘High Performance concrete (HPC) has received increased attention in the development of infrastructure Viz., Buildings, Industrial Structures, Hydraulic Structures, Bridges and Highways etc. leading to utilization of large quantity of concrete. This paper presents a comprehensive coverage of High Performance concrete developments in civil engineering field. It highlights the High Performance concrete features and requirements over conventional concrete. Furthermore, recent trends with regard to High Performance Concrete development in this area are explored. This paper also includes effect of Mineral and Chemical Admixtures used to improve performance of concrete.
文摘This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash addition affected the main fresh and hardened properties of these materials. It was found that the wood ash could be successfully incorporated into the conventional concrete. In particular, the wood ash addition not only accelerated the setting, but also improved the early and the 28-day compressive strength of concrete that contained the blast furnace slag. It was also observed that the wood ash could be positively added into RCC to facilitate the compaction and reduce the risk of segregation. In addition, the wood ash can be beneficially introduced into the flowable fill mixtures to facilitate flow, to alleviate bleeding and subsidence, as well as to achieve controlled strength especially when combined with the class C or the class F fly ash.
文摘In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25.
文摘This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that of a corresponding conventional concrete (CC) mix. The CC and SCC mix designs followed conventional proportioning in terms of aggregate type and content, cement content, air content, water-cementitiuos materials (w/cm) ratio, and workability. Then, using only chemical admixtures, the authors converted the CC mix to an SCC mix with all of the necessary passing, filling, flowability, and stability requirements typically found in SCC. The high fluidity was achieved with a polycarboxylate-based high-range water-reducing admixture, while the enhanced stability was accomplished with an organic, polymer-based viscosity-modifying admixture. The comparison indicated that the SCC and CC mixes had virtually identical tensile splitting strengths, flexural strengths, creep, and shrinkage. However, the SCC mix showed higher compressive strengths and fracture energies than the corresponding CC mix.