Footprint characteristics for passive scalar concentration in the convective boundary layer (CBL) are investigated. A backward Lagrangian stochastic (LS) dispersion model and a large eddy simulation (LES) model ...Footprint characteristics for passive scalar concentration in the convective boundary layer (CBL) are investigated. A backward Lagrangian stochastic (LS) dispersion model and a large eddy simulation (LES) model are used in the investigation. Typical characteristics of the CBL and their responses to the surface heterogeneity are resolved from the LES. Then the turbulence fields are used to drive the backward LS dispersion. To remedy the spoiled description of the turbulence near the surface, MoninObukhov similarity is applied to the lowest LES level and the surface for the modeling of the backward LS dispersion. Simulation results show that the footprint within approximately 1 km upwind predominates in the total contribution. But influence from farther distances also exists and is even slightly greater than that from closer locations. Surface heterogeneity may change the footprint pattern to a certain degree. A comparison to three analytical models provides a validation of the footprint simulations, which shows the possible influence of along-wind turbulence and the large eddies in the CBL, as well as the surface heterogeneity.展开更多
文摘本文使用高分辨率WRFV3.4.1模式对TWP-ICE试验期间的一次热带深对流过程进行了数值模拟,利用第四重嵌套每五分钟输出一次的模拟资料对对流系统的上升气流质量通量廓线特征进行了分析,并结合FLEXPART拉格朗日粒子扩散模式对热带深对流系统进行拉格朗日轨迹分析.质量通量廓线特征及拉格朗日轨迹的分析结果表明,在条件不稳定层顶附近便有部分水凝物被输送出深对流系统.深对流系统中的水凝物主要沿环境引导气流向深对流下游方向输送.由于受低层风场扰动的影响,少量的水凝物被输送到深对流系统的上游.深对流系统中的水凝物向其下游方向输送的最远距离为200-300 km,并约有10%-20%的水凝物对对流系统下游50-150 km附近卷云砧的形成产生影响,其影响的时间尺度约为4-6 h.
基金the National Natural Science Foundation of China under Grant Nos.40275005 , 40233030 the National Basic Research and Development Program under Grant 2002CB410802.
文摘Footprint characteristics for passive scalar concentration in the convective boundary layer (CBL) are investigated. A backward Lagrangian stochastic (LS) dispersion model and a large eddy simulation (LES) model are used in the investigation. Typical characteristics of the CBL and their responses to the surface heterogeneity are resolved from the LES. Then the turbulence fields are used to drive the backward LS dispersion. To remedy the spoiled description of the turbulence near the surface, MoninObukhov similarity is applied to the lowest LES level and the surface for the modeling of the backward LS dispersion. Simulation results show that the footprint within approximately 1 km upwind predominates in the total contribution. But influence from farther distances also exists and is even slightly greater than that from closer locations. Surface heterogeneity may change the footprint pattern to a certain degree. A comparison to three analytical models provides a validation of the footprint simulations, which shows the possible influence of along-wind turbulence and the large eddies in the CBL, as well as the surface heterogeneity.