This paper is concerned with fundamental properties of a class of composite systems with fractional degree generalized frequency variables, including controllability, observability and stability. Firstly, some necessa...This paper is concerned with fundamental properties of a class of composite systems with fractional degree generalized frequency variables, including controllability, observability and stability. Firstly, some necessary and sufficient conditions are given to guarantee controllability and observability of such composite systems. Then we prove that the stability problem of such composite systems can be reduced to judging whether a fractional degree polynomial is stable. Finally, the stability analysis result is applied in the supervisory control of fractional-order multi-agent systems, and an example is provided to illustrate the effectiveness of the proposed methods.展开更多
基金supported by Foundation of Shanxi Scholarship Council(2016-075)Natural Science Foundation of Shanxi Normal University(ZR1601)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(2018-25)
文摘This paper is concerned with fundamental properties of a class of composite systems with fractional degree generalized frequency variables, including controllability, observability and stability. Firstly, some necessary and sufficient conditions are given to guarantee controllability and observability of such composite systems. Then we prove that the stability problem of such composite systems can be reduced to judging whether a fractional degree polynomial is stable. Finally, the stability analysis result is applied in the supervisory control of fractional-order multi-agent systems, and an example is provided to illustrate the effectiveness of the proposed methods.