扑翼飞行器(Flapping-wing air vehicle,FAV)即通过模拟昆虫以及鸟类飞行方式而制造的仿生机器人.与常见的固定翼和旋翼飞行器相比,具有效率高、质量轻、机动性强、耗能低等显著优点,是飞行器发展的重要方向.关于扑翼机的研究始于上世...扑翼飞行器(Flapping-wing air vehicle,FAV)即通过模拟昆虫以及鸟类飞行方式而制造的仿生机器人.与常见的固定翼和旋翼飞行器相比,具有效率高、质量轻、机动性强、耗能低等显著优点,是飞行器发展的重要方向.关于扑翼机的研究始于上世纪后期,现如今从理论探索到机体开发都有了可喜的成果.本文首先介绍了世界领先的几款扑翼飞行器的特点,接着简述了扑翼飞行器在动力学、能源、控制等方面的发展现状,并对未来的研究方向做出了展望.展开更多
Vibrations in aircraft hydraulic pipeline system,due to multi-source excitation of high fluid pressure fluctuation and serious vibration environment of airframe,can cause the pipeline system vibration failures through...Vibrations in aircraft hydraulic pipeline system,due to multi-source excitation of high fluid pressure fluctuation and serious vibration environment of airframe,can cause the pipeline system vibration failures through overload in engineering field.Controlling the vibrations in hydraulic pipeline is a challenging work to ensure the flight safety of aircraft.The common vibration control technologies have been demonstrated to be effective in typical structures such as aerospace structures,shipbuilding structures,marine offshore structures,motor structures,etc.However,there are few research literatures on vibration control strategies of aircraft hydraulic pipeline.Combining with the development trend of aircraft hydraulic pipeline system and the requirement of vibration control technologies,this paper provides a detailed review on the current vibration control technologies in hydraulic pipeline system.A review of the general approaches following the passive and active control technologies are presented,which are including optimal layout technique of pipeline and clamps,constrained layer damping technique,vibration absorber technique,hydraulic hose technique,optimal pump structure technique,and active vibration control technique of pipeline system.Finally,some suggestions for the application of vibration control technologies in engineering field are given.展开更多
文摘扑翼飞行器(Flapping-wing air vehicle,FAV)即通过模拟昆虫以及鸟类飞行方式而制造的仿生机器人.与常见的固定翼和旋翼飞行器相比,具有效率高、质量轻、机动性强、耗能低等显著优点,是飞行器发展的重要方向.关于扑翼机的研究始于上世纪后期,现如今从理论探索到机体开发都有了可喜的成果.本文首先介绍了世界领先的几款扑翼飞行器的特点,接着简述了扑翼飞行器在动力学、能源、控制等方面的发展现状,并对未来的研究方向做出了展望.
基金the National Natural Science Foundation of China(No.51805462)。
文摘Vibrations in aircraft hydraulic pipeline system,due to multi-source excitation of high fluid pressure fluctuation and serious vibration environment of airframe,can cause the pipeline system vibration failures through overload in engineering field.Controlling the vibrations in hydraulic pipeline is a challenging work to ensure the flight safety of aircraft.The common vibration control technologies have been demonstrated to be effective in typical structures such as aerospace structures,shipbuilding structures,marine offshore structures,motor structures,etc.However,there are few research literatures on vibration control strategies of aircraft hydraulic pipeline.Combining with the development trend of aircraft hydraulic pipeline system and the requirement of vibration control technologies,this paper provides a detailed review on the current vibration control technologies in hydraulic pipeline system.A review of the general approaches following the passive and active control technologies are presented,which are including optimal layout technique of pipeline and clamps,constrained layer damping technique,vibration absorber technique,hydraulic hose technique,optimal pump structure technique,and active vibration control technique of pipeline system.Finally,some suggestions for the application of vibration control technologies in engineering field are given.