The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapuno...The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.展开更多
An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov fu...An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF) techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.展开更多
Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field ...Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field of application of this technique. This method is used to design a stabilizer for the inertia wheel pendulum system. Moreover, it is shown that the control Lyapunov function which is obtained from this method can also be used to design a globally asymptotically stabilizing controller with optimality.展开更多
文摘The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.
文摘An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF) techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.
文摘Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field of application of this technique. This method is used to design a stabilizer for the inertia wheel pendulum system. Moreover, it is shown that the control Lyapunov function which is obtained from this method can also be used to design a globally asymptotically stabilizing controller with optimality.