This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
This study investigates the robust feedback set stabilization of switched logic control networks(SLCNs)with state-dependent uncertain switching and control constraints.First,based on the properties of the semi-tensor ...This study investigates the robust feedback set stabilization of switched logic control networks(SLCNs)with state-dependent uncertain switching and control constraints.First,based on the properties of the semi-tensor product of matrices and the vector representation of logic,an SLCN with state-dependent uncertain switching and control constraints is expressed in algebraic form.Second,an input transformation and a switching model are constructed to transfer the original SLCN into one with a free control input and arbitrary switching.The equivalence between the set stabilizability of the original SLCN and that of the resulting SLCN is established.Based on such equivalence,the authors propose a necessary and sufficient condition for robust feedback set stabilizability.Finally,an example is presented to demonstrate the application of the results obtained.展开更多
An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The...An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The maximal positively invariant terminal set, which is feasible and invariant with respect to a feedback control law, is computed as terminal target set and an associated Lyapunov function is chosen as terminal cost. The combination of these two components guarantees constraint satisfaction and closed-loop stability for all time. The proposed algorithm combines a dynamic programming strategy with a multi-parametric quadratic programming solver and basic polyhedral manipulation. A numerical example shows that a larger stabilizable set of states can be obtained by the proposed algorithm than precious work.展开更多
The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.I...The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.In the given receding horizon,for each mode sequence of the T-S modeled nonlinear system with Markov jump parameter,the cost function is optimized by constraints on state trajectories,so that the optimization control input sequences are obtained in order to make the state into a terminal invariant set.Out of the receding horizon,the stability is guaranteed by searching a state feedback control law.Based on such stability analysis,a linear matrix inequality approach for designing receding horizon predictive controller for nonlinear systems subject to constraints both on the inputs and on the outputs is developed.The simulation shows the validity of this method.展开更多
Control invariant sets play a key role in model predictive control.Using Lyapunov function,a technique is proposed to design control invariant sets of planar systems in a precise form.First,itis designed for a linear ...Control invariant sets play a key role in model predictive control.Using Lyapunov function,a technique is proposed to design control invariant sets of planar systems in a precise form.First,itis designed for a linear system in Brunovsky canonical form.Then,the result is extended to generallinear systems.Finally,the nonlinear control systems are considered,and some sufficient conditionsand design techniques are also obtained.Numerical examples are presented to illustrate the proposeddesign methods.展开更多
This paper proposes a quantitative reconfigurability evaluation method for control systems with actuator saturation and additive faults from the perspective of system stability.Placing the saturated feedback law in th...This paper proposes a quantitative reconfigurability evaluation method for control systems with actuator saturation and additive faults from the perspective of system stability.Placing the saturated feedback law in the convex hull of a group of auxiliary linear controls,the sufficient reconfigurability conditions for the system under additive faults are derived using invariant sets.These conditions are then expressed as linear matrix inequalities(LMIs)and applied to quantify the degree of reconfigurability for the fault system.The largest fault magnitude for which the system can be stabilized,the largest initial state domain from which all the trajectories are convergent,and the minimum final state domain to which the trajectories will converge are investigated.The effectiveness of the proposed method is illustrated through an application example.展开更多
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported by the National Natural Science Foundation of China under Grant Nos.61873284,61321003,and 62373374.
文摘This study investigates the robust feedback set stabilization of switched logic control networks(SLCNs)with state-dependent uncertain switching and control constraints.First,based on the properties of the semi-tensor product of matrices and the vector representation of logic,an SLCN with state-dependent uncertain switching and control constraints is expressed in algebraic form.Second,an input transformation and a switching model are constructed to transfer the original SLCN into one with a free control input and arbitrary switching.The equivalence between the set stabilizability of the original SLCN and that of the resulting SLCN is established.Based on such equivalence,the authors propose a necessary and sufficient condition for robust feedback set stabilizability.Finally,an example is presented to demonstrate the application of the results obtained.
基金Supported by National Key Basic Research Program of China(973 Program)(2006CB922004) National Natural Science Foundation of China(60904033 60774098)+1 种基金 the Chinese Postdoctoral Science Foundation(20100470848) K.C.Wong Education Foundation HongKong
基金supported by the National Natural Science Foundation of China (60702033)Natural Science Foundation of Zhe-jiang Province (Y107440)
文摘An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The maximal positively invariant terminal set, which is feasible and invariant with respect to a feedback control law, is computed as terminal target set and an associated Lyapunov function is chosen as terminal cost. The combination of these two components guarantees constraint satisfaction and closed-loop stability for all time. The proposed algorithm combines a dynamic programming strategy with a multi-parametric quadratic programming solver and basic polyhedral manipulation. A numerical example shows that a larger stabilizable set of states can be obtained by the proposed algorithm than precious work.
基金supported by the National Natural Science Foundation of China (6097400160904045)+1 种基金National Natural Science Foundation of Jiangsu Province (BK2009068)Six Projects Sponsoring Talent Summits of Jiangsu Province
文摘The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.In the given receding horizon,for each mode sequence of the T-S modeled nonlinear system with Markov jump parameter,the cost function is optimized by constraints on state trajectories,so that the optimization control input sequences are obtained in order to make the state into a terminal invariant set.Out of the receding horizon,the stability is guaranteed by searching a state feedback control law.Based on such stability analysis,a linear matrix inequality approach for designing receding horizon predictive controller for nonlinear systems subject to constraints both on the inputs and on the outputs is developed.The simulation shows the validity of this method.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60674022, 60736022 and 60821091
文摘Control invariant sets play a key role in model predictive control.Using Lyapunov function,a technique is proposed to design control invariant sets of planar systems in a precise form.First,itis designed for a linear system in Brunovsky canonical form.Then,the result is extended to generallinear systems.Finally,the nonlinear control systems are considered,and some sufficient conditionsand design techniques are also obtained.Numerical examples are presented to illustrate the proposeddesign methods.
基金This work was supported by the National Natural Science Funds for Distinguished Young Scholars of China(61525301)the National Natural Science Fund for Excellent Young Scholars of China(62022013)the National Natural Science Foundation of China(61690215).
文摘This paper proposes a quantitative reconfigurability evaluation method for control systems with actuator saturation and additive faults from the perspective of system stability.Placing the saturated feedback law in the convex hull of a group of auxiliary linear controls,the sufficient reconfigurability conditions for the system under additive faults are derived using invariant sets.These conditions are then expressed as linear matrix inequalities(LMIs)and applied to quantify the degree of reconfigurability for the fault system.The largest fault magnitude for which the system can be stabilized,the largest initial state domain from which all the trajectories are convergent,and the minimum final state domain to which the trajectories will converge are investigated.The effectiveness of the proposed method is illustrated through an application example.