The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic ...The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sand展开更多
应用连续挤压扩展成形方式制造镁合金板材,型腔结构对镁合金这种变形条件敏感的材料影响明显。采用DEFORM-3D软件,针对两种型腔结构,数值模拟了厚度为8 mm,宽度尺寸分别为80,120和160 mm 3种规格的镁板材的连续挤压扩展成形过程,探讨了...应用连续挤压扩展成形方式制造镁合金板材,型腔结构对镁合金这种变形条件敏感的材料影响明显。采用DEFORM-3D软件,针对两种型腔结构,数值模拟了厚度为8 mm,宽度尺寸分别为80,120和160 mm 3种规格的镁板材的连续挤压扩展成形过程,探讨了型腔结构和产品尺寸变化与流动速度的关系。结果表明,增加型腔深度,低速区尺寸增大,高速区流动速度降低,模口处流动速度差减小。随着产品宽度增大,流动速度降低,模口处流速均方差增大,流动的不均匀程度增加。型腔结构和产品尺寸变化对坯料流动速度的影响缘于模壁摩擦力的作用。流动通道短,心部区域受到的摩擦阻力作用小,加大了心部和模壁区域的流动速度差。反之,增加型腔深度,模壁面积增加,摩擦力的作用区域增加,起到均匀流动速度的作用。展开更多
Continuous roll forming(CRF) is a novel forming process for three-dimensional surface parts,in which a pair of bendable forming rolls is used as sheet metal forming tool.By controlling the gap between the upper and lo...Continuous roll forming(CRF) is a novel forming process for three-dimensional surface parts,in which a pair of bendable forming rolls is used as sheet metal forming tool.By controlling the gap between the upper and lower forming rolls,sheet metal is non-uniformly extended in the longitudinal direction while it is bent in the transverse direction during the rolling process.As a result,longitudinal bending is gained and a doubly curved surface is formed.With the rotations of the forming rolls,the sheet metal is deformed consecutively,and a three-dimensional surface part is shaped continuously.In this paper,the mechanism of the three-dimensional surface formation in CRF is set forth.Through theoretical analysis of the CRF process,the governing equations for the bending deformation in rolling process are presented.Based on the simplification on the deformation and material model,the formulation to calculate the longitudinal bending deformation is derived,and the methods to design the compression ratio and the roll gap are given,the effects of compression ratio of rolling and the width of blank sheet on the longitudinal bending curvature are analyzed.The forming experiments on typical surface parts and measured results show that forming results with good precision can be obtained by CRF process.展开更多
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri...A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.展开更多
基金funded by the National Science and technology Major Project(2008ZX05001)
文摘The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sand
文摘应用连续挤压扩展成形方式制造镁合金板材,型腔结构对镁合金这种变形条件敏感的材料影响明显。采用DEFORM-3D软件,针对两种型腔结构,数值模拟了厚度为8 mm,宽度尺寸分别为80,120和160 mm 3种规格的镁板材的连续挤压扩展成形过程,探讨了型腔结构和产品尺寸变化与流动速度的关系。结果表明,增加型腔深度,低速区尺寸增大,高速区流动速度降低,模口处流动速度差减小。随着产品宽度增大,流动速度降低,模口处流速均方差增大,流动的不均匀程度增加。型腔结构和产品尺寸变化对坯料流动速度的影响缘于模壁摩擦力的作用。流动通道短,心部区域受到的摩擦阻力作用小,加大了心部和模壁区域的流动速度差。反之,增加型腔深度,模壁面积增加,摩擦力的作用区域增加,起到均匀流动速度的作用。
基金supported by the National Natural Science Foundation of China (Grant Nos. 51275202 and 51075186)
文摘Continuous roll forming(CRF) is a novel forming process for three-dimensional surface parts,in which a pair of bendable forming rolls is used as sheet metal forming tool.By controlling the gap between the upper and lower forming rolls,sheet metal is non-uniformly extended in the longitudinal direction while it is bent in the transverse direction during the rolling process.As a result,longitudinal bending is gained and a doubly curved surface is formed.With the rotations of the forming rolls,the sheet metal is deformed consecutively,and a three-dimensional surface part is shaped continuously.In this paper,the mechanism of the three-dimensional surface formation in CRF is set forth.Through theoretical analysis of the CRF process,the governing equations for the bending deformation in rolling process are presented.Based on the simplification on the deformation and material model,the formulation to calculate the longitudinal bending deformation is derived,and the methods to design the compression ratio and the roll gap are given,the effects of compression ratio of rolling and the width of blank sheet on the longitudinal bending curvature are analyzed.The forming experiments on typical surface parts and measured results show that forming results with good precision can be obtained by CRF process.
基金Project(20130161110007) supported by the Doctoral Program of Higher Education of China
文摘A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.