The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecul...The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecular and atomic structures of water. It was found that some properties of water were changed, and a lot of new and strange phenomena were discovered after magnetization. Magnetized water really has magnetism, which has been verified by a peak shift of X-ray diffraction of magnetized water + Fe3O4 hybrid relative to that of pure water + Fe3O4 hybrid, that is a saturation and memory effect. The properties of infrared and ultraviolet absorptions, Raman scattering and X-ray diffraction of magnetized water were greatly changed relative to those of pure water; their strengths of peaks were all increased, the frequencies of some peaks did also shift, and some new peaks, for example, at 5198, 8050 and 9340 cm?1, occurred at 25°C after water was magnetized. In the meanwhile, the magnetized effects of water are related to the magnetized time, the intensity of an externally applied magnetic field, and the temperature of water, but they are not a linear relationship. The study also showed a lot of new and unusual properties of magnetized water, for example, the six peaks in 3000–3800 cm?1 in infrared absorption, the exponential increase of ultraviolet absorption of wave with the decreasing wavelength of light of 200–300 nm, the frequency-shifts of peaks, a strange irreversible effect in the increasing and decreasing processes, as well as a stronger peak of absorption occurring at 50°C, 70°C and 80°C, the existence of many models of motion from 85°C to 95°C in 8000–10000 cm?1, and so on. These results show that the molecular structure of water is very complicated, which needs further study. Furthermore, the macroscopic feature of mechanics, for instance, surface tension force of magnetized water, was also measured. Experiments discovered that the size in contact angles of magnetized water on the surface展开更多
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent...The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.展开更多
利用激光微造型技术在环形试样表面加工出直径在20μm到80μm之间,且具有相同深度和面积占有率的圆凹坑,通过Talysurf CCI Lite非接触式三维光学轮廓仪测量试样表面,并采用ISO 25178参数对各试样表面进行三维表征,最后利用JPM-1双盘磨...利用激光微造型技术在环形试样表面加工出直径在20μm到80μm之间,且具有相同深度和面积占有率的圆凹坑,通过Talysurf CCI Lite非接触式三维光学轮廓仪测量试样表面,并采用ISO 25178参数对各试样表面进行三维表征,最后利用JPM-1双盘磨损试验机,在重载条件下(赫兹接触压力≥1 GPa)研究各组试样在不同工况下的摩擦特性及表面三维形貌参数对摩擦学性能的影响.试验结果说明:直径为80μm和20μm的织构表面润滑效果优于光滑表面.载荷、转速、滑滚比对摩擦系数的影响具有一定的规律性,且不同的工况下呈现的规律有所差别,在高速低载大滑滚比条件下,织构表面对提高摩擦副润滑效果最为显著,还进一步探索了表面三维表征参数Sa、Vv、Spc、Vmp、Vxp与重载条件下40Cr钢摩擦特性的关系.展开更多
基金the National Basic Research Program of China (Grant No. 2007CB936103)
文摘The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecular and atomic structures of water. It was found that some properties of water were changed, and a lot of new and strange phenomena were discovered after magnetization. Magnetized water really has magnetism, which has been verified by a peak shift of X-ray diffraction of magnetized water + Fe3O4 hybrid relative to that of pure water + Fe3O4 hybrid, that is a saturation and memory effect. The properties of infrared and ultraviolet absorptions, Raman scattering and X-ray diffraction of magnetized water were greatly changed relative to those of pure water; their strengths of peaks were all increased, the frequencies of some peaks did also shift, and some new peaks, for example, at 5198, 8050 and 9340 cm?1, occurred at 25°C after water was magnetized. In the meanwhile, the magnetized effects of water are related to the magnetized time, the intensity of an externally applied magnetic field, and the temperature of water, but they are not a linear relationship. The study also showed a lot of new and unusual properties of magnetized water, for example, the six peaks in 3000–3800 cm?1 in infrared absorption, the exponential increase of ultraviolet absorption of wave with the decreasing wavelength of light of 200–300 nm, the frequency-shifts of peaks, a strange irreversible effect in the increasing and decreasing processes, as well as a stronger peak of absorption occurring at 50°C, 70°C and 80°C, the existence of many models of motion from 85°C to 95°C in 8000–10000 cm?1, and so on. These results show that the molecular structure of water is very complicated, which needs further study. Furthermore, the macroscopic feature of mechanics, for instance, surface tension force of magnetized water, was also measured. Experiments discovered that the size in contact angles of magnetized water on the surface
基金supported by the Basic Research on Drilling & Completion of Critical Wells for Oil & Gas (Grant No. 51221003)National Science Fund for Petrochemical Industry (Project No. U1262201)+2 种基金"863" National Project (Project No. 2013AA064803)National Science Fund for Distinguished Young Scholars (Project No. 50925414)National Natural Science Foundation (Project No. 51074173)
文摘The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.
文摘利用激光微造型技术在环形试样表面加工出直径在20μm到80μm之间,且具有相同深度和面积占有率的圆凹坑,通过Talysurf CCI Lite非接触式三维光学轮廓仪测量试样表面,并采用ISO 25178参数对各试样表面进行三维表征,最后利用JPM-1双盘磨损试验机,在重载条件下(赫兹接触压力≥1 GPa)研究各组试样在不同工况下的摩擦特性及表面三维形貌参数对摩擦学性能的影响.试验结果说明:直径为80μm和20μm的织构表面润滑效果优于光滑表面.载荷、转速、滑滚比对摩擦系数的影响具有一定的规律性,且不同的工况下呈现的规律有所差别,在高速低载大滑滚比条件下,织构表面对提高摩擦副润滑效果最为显著,还进一步探索了表面三维表征参数Sa、Vv、Spc、Vmp、Vxp与重载条件下40Cr钢摩擦特性的关系.