In order to study the wear behavior of different kinds of contact wires,the dry sliding wear behaviors of Cu-Sn,Cu-Ag and Cu-Mg alloys prepared by up-drawn continuous casting and followed continuous extrusion were stu...In order to study the wear behavior of different kinds of contact wires,the dry sliding wear behaviors of Cu-Sn,Cu-Ag and Cu-Mg alloys prepared by up-drawn continuous casting and followed continuous extrusion were studied.The research was tested on a block-on-ring wear tester.The results indicate that the friction coefficient is remarkably influenced by the formation of a continuous tribofilm,which consists of oxidation film.The abrasion,adhesion,oxidation and plastic deformation are observed.Oxidation and abrasion wear mechanisms dominate at the lower sliding velocity and load.The combination of oxidation and adhesion play leading roles with the increasing load and velocity.Plastic deformation is detected under higher applied load and sliding velocities.展开更多
A uniform transient temperature field model of electrical contacts operation was found by analyzing the process of closing arc constriction resistance Joule heat ~ breaking arc. Essential parameters of Ag/La2NiO4 elec...A uniform transient temperature field model of electrical contacts operation was found by analyzing the process of closing arc constriction resistance Joule heat ~ breaking arc. Essential parameters of Ag/La2NiO4 electrical contact material for transient temperature field calculation were obtained through tests of electrical contact experimental instrument under 18 V DC in different cur- rents, other correlation experiments, and calculation anal- ysis. The finite element method was applied to solve the transient temperature field, and the features and distribution of the transient temperature field were obtained. The condition of material erosion and mass transfer can be forecasted by those calculation results. It is beneficial to research about the lifetime of Ag/La2NiO4 electrical material.展开更多
The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in...The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in engineering rock mass quality evaluation.As the core aspects of engineering rock mass quality evaluation,the structural characteristics,mechanical characteristics,and quality classification of rock mass have been innovated in recent years.The non-contact measurement technology for rock mass structure and rapid interpretation of rock mass structure information enables the intelligent extraction and analysis of rock mass structure parameters.The modular backpack laboratory system of rock mechanics provides an effective means to acquire rock mechanical parameters on-site conveniently.The theory of statistical mechanics of rock mass(SMRM)integrates various factors such as the rock mass properties,geological environment,and engineering disturbance,providing a theoretical basis for accurately evaluating the weakening and anisotropy of rock mass.The cloud computing platform established based on SMRM can provide technical support for the rapid calculation of rock mass parameters and instant evaluation of the rock mass quality.The development of intelligent evaluation method and technology is altering the conventional technical state of qualitative and semi-quantitative evaluation of engineering rock mass quality,supporting the realization of rock mass engineering construction with intellectualization and informatization.展开更多
In this study, two different designs of liquid metal fast reactor(LMFR) fuel rods wire-wrapped and nonwire-wrapped(bare) are compared with respect to different parameters as a means of considering the optimum fuel des...In this study, two different designs of liquid metal fast reactor(LMFR) fuel rods wire-wrapped and nonwire-wrapped(bare) are compared with respect to different parameters as a means of considering the optimum fuel design. Nuclear seismic rules require that systems and components that are important for safety must be capable of bearing earthquake effects, and that their integrity and functionality should be guaranteed. Mode shapes, natural frequencies, stresses on cladding, and seismic aspects are considered for comparison using ANSYS. Modal analysis is compared in a vacuum and in lead–bismuth eutectic(LBE) using potential flow theory by considering the added mass effect. A simple and accurate approach is suggested for the determination of the LBE added mass effect and is verified by a manually calculated added mass, which further proved the usefulness of potential flow theory for the accurate estimation of the added mass effect. The verification of the hydrodynamic function(τ) over the entire frequency range further validated the finite element method(FEM) modal analysis results. Stresses obtained for fuel rods against different loading combinations revealed that they were within the allowable limits with maximum stress ratios of 0.25(bare) and 0.74(wire-wrapped). In order to verify the structural integrity of cladding tubes, stresses along the cladding length were determined during different transients and were also calculated manually for static pressure. The manual calculations could be roughly compared with the ANSYS results, and the two showed a close agreement. Contact analysis methodology was selected,and the most appropriate analysis options were suggested for establishing contact between the wire and cladding for the wire-wrapped design grid independence analysis,which proved the accuracy of the results, confirmed the selection of the appropriate procedure, and validated the use of the ANSYS mechanical APDL code for LMFR fuel rod analysis. The results provided detailed insight into the structural desi展开更多
基金Projects(51134013,51074031,51274054)supported by the National Natural Science Foundation of China
文摘In order to study the wear behavior of different kinds of contact wires,the dry sliding wear behaviors of Cu-Sn,Cu-Ag and Cu-Mg alloys prepared by up-drawn continuous casting and followed continuous extrusion were studied.The research was tested on a block-on-ring wear tester.The results indicate that the friction coefficient is remarkably influenced by the formation of a continuous tribofilm,which consists of oxidation film.The abrasion,adhesion,oxidation and plastic deformation are observed.Oxidation and abrasion wear mechanisms dominate at the lower sliding velocity and load.The combination of oxidation and adhesion play leading roles with the increasing load and velocity.Plastic deformation is detected under higher applied load and sliding velocities.
基金financially supported by the National Science Foundation of China-Yunnan United Foundation(No.U0837601)the National Natural Science Foundation of China(No.51267007)the Natural Science Foundation of Yunnan Province(No.2010CD126,No.2012FB195)
文摘A uniform transient temperature field model of electrical contacts operation was found by analyzing the process of closing arc constriction resistance Joule heat ~ breaking arc. Essential parameters of Ag/La2NiO4 electrical contact material for transient temperature field calculation were obtained through tests of electrical contact experimental instrument under 18 V DC in different cur- rents, other correlation experiments, and calculation anal- ysis. The finite element method was applied to solve the transient temperature field, and the features and distribution of the transient temperature field were obtained. The condition of material erosion and mass transfer can be forecasted by those calculation results. It is beneficial to research about the lifetime of Ag/La2NiO4 electrical material.
基金the National Natural Science Foundation of China(Grant Nos.41831290 and 42177142)the Key R&D Project from Zhejiang Province,China(Grant No.2020C03092)the Key Research and Development Program of Shaanxi(Grant No.2023-YBSF-486).
文摘The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in engineering rock mass quality evaluation.As the core aspects of engineering rock mass quality evaluation,the structural characteristics,mechanical characteristics,and quality classification of rock mass have been innovated in recent years.The non-contact measurement technology for rock mass structure and rapid interpretation of rock mass structure information enables the intelligent extraction and analysis of rock mass structure parameters.The modular backpack laboratory system of rock mechanics provides an effective means to acquire rock mechanical parameters on-site conveniently.The theory of statistical mechanics of rock mass(SMRM)integrates various factors such as the rock mass properties,geological environment,and engineering disturbance,providing a theoretical basis for accurately evaluating the weakening and anisotropy of rock mass.The cloud computing platform established based on SMRM can provide technical support for the rapid calculation of rock mass parameters and instant evaluation of the rock mass quality.The development of intelligent evaluation method and technology is altering the conventional technical state of qualitative and semi-quantitative evaluation of engineering rock mass quality,supporting the realization of rock mass engineering construction with intellectualization and informatization.
基金supported by the National Key R&D Program of China(No.2018YFB1900601)National Natural Science Foundation of China(No.11772086)
文摘In this study, two different designs of liquid metal fast reactor(LMFR) fuel rods wire-wrapped and nonwire-wrapped(bare) are compared with respect to different parameters as a means of considering the optimum fuel design. Nuclear seismic rules require that systems and components that are important for safety must be capable of bearing earthquake effects, and that their integrity and functionality should be guaranteed. Mode shapes, natural frequencies, stresses on cladding, and seismic aspects are considered for comparison using ANSYS. Modal analysis is compared in a vacuum and in lead–bismuth eutectic(LBE) using potential flow theory by considering the added mass effect. A simple and accurate approach is suggested for the determination of the LBE added mass effect and is verified by a manually calculated added mass, which further proved the usefulness of potential flow theory for the accurate estimation of the added mass effect. The verification of the hydrodynamic function(τ) over the entire frequency range further validated the finite element method(FEM) modal analysis results. Stresses obtained for fuel rods against different loading combinations revealed that they were within the allowable limits with maximum stress ratios of 0.25(bare) and 0.74(wire-wrapped). In order to verify the structural integrity of cladding tubes, stresses along the cladding length were determined during different transients and were also calculated manually for static pressure. The manual calculations could be roughly compared with the ANSYS results, and the two showed a close agreement. Contact analysis methodology was selected,and the most appropriate analysis options were suggested for establishing contact between the wire and cladding for the wire-wrapped design grid independence analysis,which proved the accuracy of the results, confirmed the selection of the appropriate procedure, and validated the use of the ANSYS mechanical APDL code for LMFR fuel rod analysis. The results provided detailed insight into the structural desi