Strip Wireless Sensor Networks(SWSNs)have drawn much attention in many applications such as monitoring rivers,highways and coal mines.Packet delivery in SWSN usually requires a large number of multi-hop transmissions ...Strip Wireless Sensor Networks(SWSNs)have drawn much attention in many applications such as monitoring rivers,highways and coal mines.Packet delivery in SWSN usually requires a large number of multi-hop transmissions which leads to long transmission latency in low-duty-cycle SWSNs.Several pipeline scheduling schemes have been proposed to reduce latency.However,when communication links are unreliable,pipeline scheduling is prone to failure.In this paper,we propose a pipeline scheduling transmission protocol based on constructive interference.The protocol first divides the whole network into multiple partitions and uses a pipelined mechanism to allocate active time slots for each partition.The nodes in the same partition wake up at the same time for concurrent transmission.Multiple identical signals interfere constructively at the receiver node,which enhances received signal strength and improves link quality.Simulations show that the proposed scheme can significantly reduce the transmission latency while maintaining low energy consumption compared with other schemes.展开更多
基金This work is supported in part by the National Natural Science Foundation of China(Grant No.61672282)the Basic Research Program of Jiangsu Province(Grant No.BK20161491).
文摘Strip Wireless Sensor Networks(SWSNs)have drawn much attention in many applications such as monitoring rivers,highways and coal mines.Packet delivery in SWSN usually requires a large number of multi-hop transmissions which leads to long transmission latency in low-duty-cycle SWSNs.Several pipeline scheduling schemes have been proposed to reduce latency.However,when communication links are unreliable,pipeline scheduling is prone to failure.In this paper,we propose a pipeline scheduling transmission protocol based on constructive interference.The protocol first divides the whole network into multiple partitions and uses a pipelined mechanism to allocate active time slots for each partition.The nodes in the same partition wake up at the same time for concurrent transmission.Multiple identical signals interfere constructively at the receiver node,which enhances received signal strength and improves link quality.Simulations show that the proposed scheme can significantly reduce the transmission latency while maintaining low energy consumption compared with other schemes.