建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型...建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型的神经网络PID控制器。为了提高神经网络的收敛速度,采用Levenberg-Marquardt算法计算连接权值更新量,并对当前解施加一个以一定概率保留的随机扰动,加快迭代过程跳出局部极小点。对装置主电路和改进神经网络PID控制器进行仿真,结果表明:系统动态响应快,鲁棒性强,调节平滑,具有较好的控制效果。最后,制造并测试了额定电压660 V、容量400 k VA的实验样机,对理论研究进行了实验验证。展开更多
The shear strength parameters of soil (cohesion and angle of internal friction) are quite essential in solving many civil engineering problems. In order to determine these parameters, laboratory tests are used. The ...The shear strength parameters of soil (cohesion and angle of internal friction) are quite essential in solving many civil engineering problems. In order to determine these parameters, laboratory tests are used. The main objective of this work is to evaluate the potential of Artificial Neural Network (ANN) and Regression Tree (CART) techniques for the indirect estimation of these parameters. Four different models, considering different combinations of 6 inputs, such as gravel %, sand %, silt %, clay %, dry density, and plasticity index, were investigated to evaluate the degree of their effects on the prediction of shear parameters. A performance evaluation was carried out using Correlation Coefficient and Root Mean Squared Error measures. It was observed that for the prediction of friction angle, the performance of both the techniques is about the same. However, for the prediction of cohesion, the ANN technique performs better than the CART technique. It was further observed that the model considering all of the 6 input soil parameters is the most appropriate model for the prediction of shear parameters. Also, connection weight and bias analyses of the best neural network (i.e., 6/2/2) were attempted using Connec- tion Weight, Garson, and proposed Weight-bias approaches to characterize the influence of input variables on shear strength parameters. It was observed that the Connection Weight Approach provides the best overall methodology for accurately quantifying variable importance, and should be favored over the other approaches examined in this study.展开更多
A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the ...A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.展开更多
文摘建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型的神经网络PID控制器。为了提高神经网络的收敛速度,采用Levenberg-Marquardt算法计算连接权值更新量,并对当前解施加一个以一定概率保留的随机扰动,加快迭代过程跳出局部极小点。对装置主电路和改进神经网络PID控制器进行仿真,结果表明:系统动态响应快,鲁棒性强,调节平滑,具有较好的控制效果。最后,制造并测试了额定电压660 V、容量400 k VA的实验样机,对理论研究进行了实验验证。
文摘The shear strength parameters of soil (cohesion and angle of internal friction) are quite essential in solving many civil engineering problems. In order to determine these parameters, laboratory tests are used. The main objective of this work is to evaluate the potential of Artificial Neural Network (ANN) and Regression Tree (CART) techniques for the indirect estimation of these parameters. Four different models, considering different combinations of 6 inputs, such as gravel %, sand %, silt %, clay %, dry density, and plasticity index, were investigated to evaluate the degree of their effects on the prediction of shear parameters. A performance evaluation was carried out using Correlation Coefficient and Root Mean Squared Error measures. It was observed that for the prediction of friction angle, the performance of both the techniques is about the same. However, for the prediction of cohesion, the ANN technique performs better than the CART technique. It was further observed that the model considering all of the 6 input soil parameters is the most appropriate model for the prediction of shear parameters. Also, connection weight and bias analyses of the best neural network (i.e., 6/2/2) were attempted using Connec- tion Weight, Garson, and proposed Weight-bias approaches to characterize the influence of input variables on shear strength parameters. It was observed that the Connection Weight Approach provides the best overall methodology for accurately quantifying variable importance, and should be favored over the other approaches examined in this study.
基金Project supported hy the National Natural Science Foundation of China.
文摘A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.