Working in the physics of Wilson factor and Aharonov-Bohm effect, we find in the fluxtubequark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional quantum Hall effe...Working in the physics of Wilson factor and Aharonov-Bohm effect, we find in the fluxtubequark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional quantum Hall effect (FQHE) in condensed matter. This similarity yields the result that the constituent quarks of baryon have the "filling factor" 1/3, thus the previous conjecture that quark confinement is a correlation effect is confirmed. Moreover, by deriving a Hamiltonian of the system analogous to that of FQHE, we predict an energy gap for the ground state of a heavy three-quark system.展开更多
文摘Working in the physics of Wilson factor and Aharonov-Bohm effect, we find in the fluxtubequark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional quantum Hall effect (FQHE) in condensed matter. This similarity yields the result that the constituent quarks of baryon have the "filling factor" 1/3, thus the previous conjecture that quark confinement is a correlation effect is confirmed. Moreover, by deriving a Hamiltonian of the system analogous to that of FQHE, we predict an energy gap for the ground state of a heavy three-quark system.