期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
条件非线性最优扰动方法在适应性观测研究中的初步应用 被引量:37
1
作者 穆穆 王洪利 周菲凡 《大气科学》 CSCD 北大核心 2007年第6期1102-1112,共11页
针对适应性观测中敏感性区域的确定问题,考虑初始误差对预报结果的影响,比较了条件非线性最优扰动(CNOP)与第一线性奇异向量(FSV)在两个降水个例中的空间结构的差异,考察了它们总能量范数随时间发展演变的异同。结合敏感性试验的分析,... 针对适应性观测中敏感性区域的确定问题,考虑初始误差对预报结果的影响,比较了条件非线性最优扰动(CNOP)与第一线性奇异向量(FSV)在两个降水个例中的空间结构的差异,考察了它们总能量范数随时间发展演变的异同。结合敏感性试验的分析,揭示了预报结果对CNOP类型的初始误差的敏感性要大于对FSV类型的初始误差的敏感性,因而减少初值中CNOP类型误差的振幅比减少FSV类型的收益要大。这一结果表明可以把CNOP方法应用于适应性观测来识别大气的敏感区。关于将CNOP方法有效地应用于适应性观测所面临的挑战及需要采取的对策等也进行了讨论。 展开更多
关键词 适应性观测 敏感性区域 条件非线性最优扰动 第一奇异向量
下载PDF
基于CNOP方法的台风目标观测中三种敏感区确定方案的比较研究 被引量:14
2
作者 周菲凡 张贺 《大气科学》 CSCD 北大核心 2014年第2期261-272,共12页
在目标观测中,敏感区的确定是个关键性的问题。本文详细研究了如何用条件非线性最优扰动(CNOP)方法确定敏感区。提出了三种确定敏感区的方案:水平投影方案、单点能量投影方案以及垂直积分能量方案。比较了三种方案确定的敏感区的差异,... 在目标观测中,敏感区的确定是个关键性的问题。本文详细研究了如何用条件非线性最优扰动(CNOP)方法确定敏感区。提出了三种确定敏感区的方案:水平投影方案、单点能量投影方案以及垂直积分能量方案。比较了三种方案确定的敏感区的差异,分析了它们所阐释的物理意义,讨论了它们的优缺点,并通过理想回报试验考查了不同方案确定的敏感区的有效性。对六个台风个例的应用结果显示,单点能量投影方案与垂直积分能量方案下识别的敏感区较为相似,二者与水平投影方案确定的敏感区则有较大的区别。两种能量方案确定的敏感区更多地反映了环境场对台风的影响,而水平投影方案则反映了台风自身对流不对称性结构对台风发展变化的影响。理想回报试验结果表明,由两种能量方案确定的敏感区对预报误差能量的减小程度以及路径预报的改善程度都要大于水平投影方案确定的敏感区的效果,且垂直积分能量方案确定的敏感区的有效性最高。而在强度预报方面,三种方案对预报效果的改善程度相当。因此,总的说在台风目标观测研究中,利用CNOP方法确定敏感区时,垂直积分能量方案是较佳的方案。 展开更多
关键词 条件非线性最优扰动(cnop) 台风目标观测 敏感区
下载PDF
Impact of Different Guidances on Sensitive Areas of Targeting Observations Based on the CNOP Method 被引量:8
3
作者 谭晓伟 王斌 王栋梁 《Acta meteorologica Sinica》 SCIE 2010年第1期17-30,共14页
The conditional nonlinear optimal perturbations(CNOPs) obtained by a fast algorithm are applied to determining the sensitive area for the targeting observation of Typhoon Matsa in 2005 using an operational regional ... The conditional nonlinear optimal perturbations(CNOPs) obtained by a fast algorithm are applied to determining the sensitive area for the targeting observation of Typhoon Matsa in 2005 using an operational regional prediction model-the Global/Regional Assimilation and PrEdiction System(GRAPES).Through a series of sensitivity experiments,several issues on targeting strategy design are discussed,including the effectivity of different guidances to determine the sensitive area(or targeting area) and the impact of sensitive area size on improving the 24-h forecast.In this study,three guidances are used along with the CNOP to find sensitive area for improving the 24-h prediction of sea level pressure and accumulated rainfall in the verification region.The three guidances are based on winds only;on winds,geopotential height,and specific humidity;and on winds,geopotential height,specific humidity,and observation error,respectively.The distribution and effectivity of the sensitive areas are compared with each other,and the results show that the sensitive areas identified by the three guidances are different in terms of convergence and effectivity.All the sensitive areas determined by these guidances can lead to improvement of the 24-h forecast of interest. The second and third guidances are more effective and can identify more similar sensitive areas than the first one.Further,the size of sensitive areas is changed the same way for three guidances and the 24-h accumulated rainfall prediction is examined.The results suggest that a larger sensitive area can result in better prediction skill,provided that the guidance is sensitive to the size of sensitive areas. 展开更多
关键词 conditional nonlinear optimal perturbationcnop targeting observations observational system sensitivity experiment(OSSE) Typhoon Matsa
原文传递
On the Application of a Genetic Algorithm to the Predictability Problems Involving "On-Off" Switches 被引量:5
4
作者 ZHENG Qin DAI Yi +2 位作者 ZHANG Lu SHA Jianxin LU Xiaoqing 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第2期422-434,共13页
The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear o... The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured. 展开更多
关键词 PREDICTABILITY on–off switch conditional nonlinear optimal perturbation cnop genetic al- gorithm (GA)
下载PDF
Identifying sensitive areas of adaptive observations for prediction of the Kuroshio large meander using a shallow-water model 被引量:4
5
作者 邹广安 王强 穆穆 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第5期1122-1133,共12页
Sensitive areas for prediction of the Kuroshio large meander using a 1.5-layer,shallowwater ocean model were investigated using the conditional nonlinear optimal perturbation(CNOP) and first singular vector(FSV) metho... Sensitive areas for prediction of the Kuroshio large meander using a 1.5-layer,shallowwater ocean model were investigated using the conditional nonlinear optimal perturbation(CNOP) and first singular vector(FSV) methods.A series of sensitivity experiments were designed to test the sensitivity of sensitive areas within the numerical model.The following results were obtained:(1) the effect of initial CNOP and FSV patterns in their sensitive areas is greater than that of the same patterns in randomly selected areas,with the effect of the initial CNOP patterns in CNOP sensitive areas being the greatest;(2) both CNOP- and FSV-type initial errors grow more quickly than random errors;(3) the effect of random errors superimposed on the sensitive areas is greater than that of random errors introduced into randomly selected areas,and initial errors in the CNOP sensitive areas have greater effects on final forecasts.These results reveal that the sensitive areas determined using the CNOP are more sensitive than those of FSV and other randomly selected areas.In addition,ideal hindcasting experiments were conducted to examine the validity of the sensitive areas.The results indicate that reduction(or elimination) of CNOP-type errors in CNOP sensitive areas at the initial time has a greater forecast benefit than the reduction(or elimination) of FSVtype errors in FSV sensitive areas.These results suggest that the CNOP method is suitable for determining sensitive areas in the prediction of the Kuroshio large-meander path. 展开更多
关键词 Kuroshio large meander conditional nonlinear optimal perturbation(cnop) first singular vector(FSV) sensitive areas
下载PDF
Impact of observational MJO forcing on ENSO predictability in the Zebiak-Cane model: PartⅠ.Effect on the maximum prediction error 被引量:4
6
作者 PENG Yuehua SONG Junqiang +1 位作者 XIANG Jie SUN Chengzhi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第5期39-45,共7页
With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational dat... With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation. 展开更多
关键词 E1 Nifio-Southern Oscillation (ENSO) Madden-/ulian Oscillation (M/O) maximum prediction error conditional nonlinear optimal perturbation cnop
下载PDF
A New Approach for Parameter Optimization in Land Surface Model 被引量:3
7
作者 李红祺 郭维栋 +2 位作者 孙国栋 张耀存 符淙斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1056-1066,共11页
In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observation... In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observations at Tongyu station in Jilin Province,China,combined with a sophisticated LSM (common land model,CoLM).Tongyu station is a reference site of the international Coordinated Energy and Water Cycle Observations Project (CEOP) that has studied semiarid regions that have undergone desertification,salination,and degradation since late 1960s.In this study,three key land-surface parameters,namely,soil color,proportion of sand or clay in soil,and leaf-area index were chosen as parameters to be optimized.Our study comprised three experiments:First,a single-parameter optimization was performed,while the second and third experiments performed triple-and six-parameter optimizations,respectively.Notable improvements in simulating sensible heat flux (SH),latent heat flux (LH),soil temperature (TS),and moisture (MS) at shallow layers were achieved using the optimized parameters.The multiple-parameter optimization experiments performed better than the single-parameter experminent.All results demonstrate that the CNOP method can be used to optimize expanded parameters in an LSM.Moreover,clear mathematical meaning,simple design structure,and rapid computability give this method great potential for further application to parameter optimization in LSMs. 展开更多
关键词 land surface model parameter optimization conditional nonlinear optimal perturbation cnop
下载PDF
基于CNOP方法的台风目标观测研究进展 被引量:4
8
作者 穆穆 周菲凡 《气象科技进展》 2015年第3期6-17,共12页
简要但系统地介绍了条件非线性最优扰动(CNOP)方法在台风目标观测方面的研究进展。CNOP方法是线性奇异向量(SV)方法在非线性领域的一个拓展。在台风目标观测的研究中,该方法主要用来识别对台风预报有重要影响的敏感区,从而可以在这些敏... 简要但系统地介绍了条件非线性最优扰动(CNOP)方法在台风目标观测方面的研究进展。CNOP方法是线性奇异向量(SV)方法在非线性领域的一个拓展。在台风目标观测的研究中,该方法主要用来识别对台风预报有重要影响的敏感区,从而可以在这些敏感区内增加观测,改进初始场以提高预报技巧。首先回顾了CNOP方法在台风目标观测中应用的理论基础,接着阐述了CNOP识别的敏感区受模式分辨率、验证区域的设计、优化时长的选取等因素的影响,并给出了利用观测系统模拟试验(OSSE)和观测系统试验(OSE)对CNOP识别的敏感区有效性检验的结果,进一步评述了将CNOP方法应用于实际天气业务预报中进行敏感区识别的可能性,最后对CNOP方法在台风目标观测中的深入应用进行了总结和讨论。 展开更多
关键词 条件非线性最优扰动 cnop 目标观测 台风预报
下载PDF
Targeted Observations for Improving Prediction of the NAO Onset 被引量:2
9
作者 Guokun DAI Mu MU Zhina JIANG 《Journal of Meteorological Research》 SCIE CSCD 2019年第6期1044-1059,共16页
Based on the viewpoint that the North Atlantic Oscillation(NAO)has an intrinsic timescale of approximate two weeks and can be treated as an initial value problem,targeted observations for improving the prediction of t... Based on the viewpoint that the North Atlantic Oscillation(NAO)has an intrinsic timescale of approximate two weeks and can be treated as an initial value problem,targeted observations for improving the prediction of the onset of NAO events are investigated by using the conditional nonlinear optimal perturbation(CNOP)method with a quasigeostrophic model.The results show that flow-dependent sensitive areas for the prediction of NAO onset are mainly located over North Atlantic and its upstream regions.Targeted observations over the main sensitive areas could improve NAO onset prediction in most cases(approximately 75%)due to reduced errors in anomalous eddy vorticity forcing(EVF)projection in the typical NAO mode.Moreover,a flow-independent sensitive area is determined based on the winter climatological flow,which is located over North America and its adjacent ocean.The NAO onset prediction can also be improved by targeted observations over the flow-independent sensitive area,but the skill improvement is somewhat lower than that derived from observations over the flow-dependent sensitive area.The above results indicate that targeted observations over sensitive areas identified by the CNOP method can help to improve the onset prediction of NAO events. 展开更多
关键词 North ATLANTIC Oscillation(NAO) targeted observations EDDY VORTICITY forcing(EVF) conditional nonlinear optimal perturbation(cnop)
原文传递
Effect of Stochastic MJO Forcing on ENSO Predictability 被引量:2
10
作者 彭跃华 段晚锁 项杰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第6期1279-1290,共12页
Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal for... Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum prediction error for ENSO events caused by conditional nonlinear optimal perturbation(CNOP);compared to CNOP-type initial error,the model error caused by the uncertainties of MJO led to a smaller prediction uncertainty of ENSO,and its influence over the ENSO predictability was not significant.This result suggests that the initial error might be the main error source that produces uncertainty in ENSO prediction,which could provide a theoretical foundation for the data assimilation of the ENSO forecast. 展开更多
关键词 Madden-Julian Oscillation(MJO) El Nin o-Southern Oscillation(ENSO) conditional nonlinear optimal perturbationcnop model error
下载PDF
条件非线性最优扰动(CNOP):简介与数值求解 被引量:3
11
作者 孙国栋 穆穆 +2 位作者 段晚锁 王强 彭飞 《气象科技进展》 2016年第6期6-14,共9页
介绍了条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)的定义及其在大气和海洋等可预报性研究中的应用。根据研究对象不同,CNOP分为与初始扰动有关的CNOP(CNOP-I)方法、与模式参数扰动有关的CNOP(CNOP-P)方法和... 介绍了条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)的定义及其在大气和海洋等可预报性研究中的应用。根据研究对象不同,CNOP分为与初始扰动有关的CNOP(CNOP-I)方法、与模式参数扰动有关的CNOP(CNOP-P)方法和同时考虑初始扰动和模式参数扰动的CNOP方法。目前,CNOP-I方法已经应用于ENSO、黑潮和阻塞可预报性以及热盐环流和草原生态系统稳定性的研究。此外,CNOP-I方法也被应用于探讨台风目标观测的研究,利用CNOP-I方法能够识别出台风预报的初值敏感区,通过观测系统模拟试验表明在初值敏感区增加观测能够有效改进台风的预报技巧。CNOP-P方法也在ENSO和黑潮可预报性以及热盐环流和草原生态系统稳定性研究中得到了应用。为了将CNOP方法应用于更多的领域,本文利用一个简单的Burgers方程,介绍了如何通过建立Burgers方程的切线性模式和伴随模式,从而利用非线性最优化算法计算获得CNOP。这一数值试验为将CNOP方法应用于更多的领域提供了借鉴。 展开更多
关键词 条件非线性最优扰动方法(cnop) 可预报性 目标观测
下载PDF
Optimal precursors of double-gyre regime transitions with an adjoint-free method 被引量:1
12
作者 YUAN Shijin LI Mi +3 位作者 WANG Qiang ZHANG Kun ZHANG Huazhen MU Bin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第4期1137-1153,共17页
In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we si... In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we simulate the multiple-equilibria regimes of double-gyre circulation under different viscosity coefficient and obtain the bifurcation diagram, then choose two equilibrium states (called jet-up state and jet-down state) as reference states respectively, propose Principal Component Analysis-based Simulated Annealing (PCASA) algorithm to solve CNOP-type initial perturbations which can induce double-gyre regime transitions between jet-up state and jet-down state. PCASA algorithm is an adjoint-free method which searches optimal solution randomly in the whole solution space. In addition, we investigate CNOP-type initial perturbations how to evolve with time. The results show:(1) the CNOP-type perturbations present a two-cell structure, and gradually evolves into a three-cell structure at predictive time;(2) by superimposing CNOP-type perturbations on the jet-up state and integrating ROMS, double-gyre circulation transfers from jet-up state to jet-down state, and vice versa, and random initial perturbations don't cause the transitions, which means CNOP-type perturbations are the optimal precursors of double-gyre regime transitions;(3) by analyzing the transition process of double-gyre regime transitions, we find that CNOP-type initial perturbations obtain energy from the background state through both barotropic and baroclinic instabilities, and barotropic instability contributes more significantly to the fast-growth of the perturbations. The optimal precursors and the dynamic mechanism of double-gyre regime transitions revealed in this paper have an important significance to enhance the predictability of double-gyre circulation. 展开更多
关键词 optimal precursors double-gyre regime transitions conditional nonlinear optimal perturbation (cnop) Principal Component Analysis-based Simulated Annealing (PCASA) multipleequilibria regimes
下载PDF
非线性最优化方法在大气-海洋科学研究中的若干应用 被引量:1
13
作者 穆穆 王强 《中国科学:数学》 CSCD 北大核心 2017年第10期1207-1222,共16页
本文主要介绍了作者研究组近几年来将非线性最优化方法应用于大气-海洋科学研究中的有关工作,重点是基于非线性最优化所提出的条件非线性最优扰动(CNOP)方法的理论框架及近几年的发展,以及在大气-海洋科学研究中的最新应用成果,主要包... 本文主要介绍了作者研究组近几年来将非线性最优化方法应用于大气-海洋科学研究中的有关工作,重点是基于非线性最优化所提出的条件非线性最优扰动(CNOP)方法的理论框架及近几年的发展,以及在大气-海洋科学研究中的最新应用成果,主要包括集合预报、一些高影响海-气环境事件的可预报性、模式参数敏感性的识别以及模式倾向误差和边界条件误差的评估等.此外,本文也讨论了应用CNOP方法面临的困难与挑战,并展望了未来的发展. 展开更多
关键词 非线性最优化 条件非线性最优扰动(cnop) 大气 海洋
原文传递
日本南部黑潮路径发生弯曲的最优前期征兆及其发展机制 被引量:1
14
作者 徐强强 王强 马利斌 《海洋科学》 CAS CSCD 北大核心 2013年第12期52-61,共10页
基于正压出入流模式,利用条件非线性最优扰动(CNOP)方法研究初始异常的位置与模态对日本南部黑潮路径变异的影响。以模式模拟出的黑潮平直路径的平衡态作为参考态,计算CNOP,考察该扰动随时间的发展,并与随机扰动的发展进行对比。结果表... 基于正压出入流模式,利用条件非线性最优扰动(CNOP)方法研究初始异常的位置与模态对日本南部黑潮路径变异的影响。以模式模拟出的黑潮平直路径的平衡态作为参考态,计算CNOP,考察该扰动随时间的发展,并与随机扰动的发展进行对比。结果表明,CNOP能够导致黑潮弯曲路径发生,随机扰动则不能。因此,CNOP可以作为导致日本南部黑潮路径发生弯曲的一种最优前期征兆。通过分析CNOP和随机扰动的发展过程,可以得出:(1)CNOP使黑潮发展成弯曲路径的过程是一个气旋涡向下游传播并增长的过程。(2)气旋涡的向东传播都是非线性项的作用,也就是涡度平流造成的。(3)CNOP和随机扰动发展过程中所产生的气旋涡均会传播到下游区域,但是CNOP产生的气旋涡能够增强,最终导致弯曲路径发生,而随机扰动产生的气旋涡则会减弱,并不能导致弯曲路径发生。分析发现,在CNOP实验中,非线性作用使气旋涡增大;但在随机扰动实验中,非线性作用使气旋涡减弱,所以非线性作用对日本南部黑潮路径发生弯曲有重要影响。(4)底摩擦效应对日本南部黑潮路径变异影响较小。本文揭示的黑潮路径发生弯曲的最优前期征兆及其非线性发展机制,对提高黑潮路径变异的预报技巧具有重要意义。 展开更多
关键词 黑潮路径 条件非线性最优扰动(cnop) 前期征兆 正压出入流模式
下载PDF
初始误差对双环流变异可预报性的影响 被引量:1
15
作者 张坤 穆穆 王强 《海洋科学》 CAS CSCD 北大核心 2015年第5期120-128,共9页
使用球坐标下1.5层约化重力浅水模式模拟海洋风生双环流,结果显示双环流射流存在拉伸模态和收缩模态间的年际变化。以双环流从拉伸模态向收缩模态的转变过程为背景场,利用条件非线性最优扰动(CNOP)方法,考察初始误差对双环流变异可预报... 使用球坐标下1.5层约化重力浅水模式模拟海洋风生双环流,结果显示双环流射流存在拉伸模态和收缩模态间的年际变化。以双环流从拉伸模态向收缩模态的转变过程为背景场,利用条件非线性最优扰动(CNOP)方法,考察初始误差对双环流变异可预报性的影响,得到两类初始误差:全局CNOP型和局部CNOP(LCNOP)型,两类初始误差对双环流变异的影响几乎相反。通过考察误差发展,发现在射流从拉伸模态向收缩模态转变过程中,CNOP型初始误差使射流弯曲程度变大,并在预报时刻导致涡脱落;而LCNOP型初始误差则使射流弯曲程度变小。相比LCNOP,CNOP型初始误差引起更大预报误差,导致双环流变异的预报技巧下降更多。两类误差得到较大发展的区域可能存在正压不稳定,使误差能够不断从背景场吸收能量进而得到快速发展。给出了两类使双环流变异预报技巧下降最大的初始误差,在实际的数值预报中减少这两种类型的误差,将有助于提高双环流变异的预报技巧。 展开更多
关键词 双环流变异 条件非线性最优扰动(cnop) 可预报性
下载PDF
几种约束优化算法求解含“开关”过程的条件非线性最优扰动的比较 被引量:1
16
作者 郑琴 叶飞辉 +1 位作者 沙建新 李能海 《大气科学学报》 CSCD 北大核心 2017年第2期273-279,共7页
求解条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)属约束最优化问题,一般采用基于伴随模式提供梯度信息的约束优化算法(简称ADJ)进行求解。当优化问题涉及不连续的"开关"过程时,传统优化算法的寻优... 求解条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)属约束最优化问题,一般采用基于伴随模式提供梯度信息的约束优化算法(简称ADJ)进行求解。当优化问题涉及不连续的"开关"过程时,传统优化算法的寻优能力会受到较大的影响。近年来遗传算法(Genetic Algorithm,GA)因其在非光滑优化问题中的鲁棒性备受关注,但GA的性能不仅与优化问题有关,还取决于遗传算子的配置。本文将一种新的约束GA(GA1)用于求解CNOP,并对GA1,ADJ及具有不同遗传算子配置的约束GA(GA2)求解含"开关"过程的CNOP时的性能进行了比较。数值试验结果显示,GA1和GA2的全局寻优能力明显优于ADJ,后者易于陷入局部最优;对于不同的初猜值(不同的初始种群),GA1求解的CNOP能够保持一个较为一致的空间结构,ADJ求解的CNOP呈现了明显的两种结构,一种代表的是全局CNOP,一种是局部CNOP。通过验证不同遗传策略对优化结果的影响发现,对不同的优化问题,采用合适的遗传策略以及合适的参数设置是获取更好优化结果的一种有效途径。 展开更多
关键词 遗传算法 条件非线性最优 扰动 “开关”过程
下载PDF
Lorenz-96模式中三种目标观测方法的有效性比较
17
作者 严珺 郑琴 +1 位作者 周仕政 王璞 《气象科技》 北大核心 2017年第5期829-835,842,共8页
目标观测是有效提升观测效能和观测质量的一种观测策略,其核心部分是敏感区的识别。本文在Lorenz-96模式上比较了奇异向量法(SVs)、集合变换卡尔曼滤波法(ETKF)和条件非线性最优扰动法(CNOP)识别敏感区的优劣,并尝试揭示ETKF方法性能不... 目标观测是有效提升观测效能和观测质量的一种观测策略,其核心部分是敏感区的识别。本文在Lorenz-96模式上比较了奇异向量法(SVs)、集合变换卡尔曼滤波法(ETKF)和条件非线性最优扰动法(CNOP)识别敏感区的优劣,并尝试揭示ETKF方法性能不稳定的原因与机制。试验结果表明:在312h内的不同预报时刻,CNOP方法识别的敏感区范围较小且对预报效果的提升率最高;SVs方法识别的敏感区对72h内的预报有较好的改进,但72h后改进程度急剧下降,到120h后基本失效;ETKF方法识别的敏感区在72h内不如其他方法的效果好。此外,在ETKF方法识别的敏感区与随机选取的敏感区对比中发现,由于ETKF方法操作时采用顺序观测资料处理方案搜寻敏感区,本质上忽略了观测资料间的相关性,导致ETKF方法识别出的敏感区并不一定是全局信号方差最大的区域,对预报效果的改善有限,这也说明了如何优化敏感区搜寻方案是提高ETKF方法效能的关键。 展开更多
关键词 目标观测 敏感区 奇异向量 集合变换卡尔曼滤波 条件非线性最优扰动
下载PDF
CNOP-P-based parameter sensitivity for double-gyre variation in ROMS with simulated annealing algorithm 被引量:3
18
作者 YUAN Shijin ZHANG Huazhen +1 位作者 LI Mi MU Bin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第3期957-967,共11页
Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonl... Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis. 展开更多
关键词 parameter sensitivity DOUBLE GYRE Regional Ocean Modeling System(ROMS) conditional nonlinear optimal perturbation(cnop-P) simulated annealing(SA)algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部