提出类别属性数据流数据离群度量——加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categoric...提出类别属性数据流数据离群度量——加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categorical data streams based on frequent pattern).该算法通过动态发现和维护频繁模式来计算离群度,能够有效地处理高维类别属性数据流,并可进一步扩展到数值属性和混合属性数据流.对仿真数据集和真实数据集的实验检测均验证该算法具有良好的适用性和有效性.展开更多
集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法.针对传统集成式数据流挖掘存在的缺陷,将人类的回忆和遗忘机制引入到数据流挖掘中,提出基于记忆的数据流挖掘模型MDSM(memorizing based data stream mining).该模型将基...集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法.针对传统集成式数据流挖掘存在的缺陷,将人类的回忆和遗忘机制引入到数据流挖掘中,提出基于记忆的数据流挖掘模型MDSM(memorizing based data stream mining).该模型将基分类器看作是系统获得的知识,通过"回忆与遗忘"机制,不仅使历史上有用的基分类器因记忆强度高而保存在"记忆库"中,提高预测的稳定性,而且从"记忆库"中选取当前分类效果好的基分类器参与集成预测,以提高对概念变化的适应能力.基于MDSM模型,提出了一种集成式数据流挖掘算法MAE(memorizing based adaptive ensemble),该算法利用Ebbinghaus遗忘曲线对系统的遗忘机制进行设计,并利用选择性集成来模拟人类的"回忆"机制.与4种典型的数据流挖掘算法进行比较,结果表明:MAE算法分类精度高,对概念漂移的整体适应能力强,尤其对重复出现的概念漂移以及实际应用中存在的复杂概念漂移具有很好的适应能力.不仅能够快速适应新的概念变化,并且能够有效抵御随机的概念波动对系统性能的影响.展开更多
数据流是随着时间顺序快速变化的和连续的,对其进行频繁模式挖掘时会出现概念漂移现象.在一些数据流应用中,通常认为最新的数据具有最大的价值.数据流挖掘会产生大量无用的模式,为了减少无用模式且保证无损压缩,需要挖掘闭合模式.因此,...数据流是随着时间顺序快速变化的和连续的,对其进行频繁模式挖掘时会出现概念漂移现象.在一些数据流应用中,通常认为最新的数据具有最大的价值.数据流挖掘会产生大量无用的模式,为了减少无用模式且保证无损压缩,需要挖掘闭合模式.因此,提出了一种基于时间衰减模型和闭合算子的数据流闭合模式挖掘方式TDMCS(Time-Decay-Model-based Closed frequent pattern mining on data Stream).该算法采用时间衰减模型来区分滑动窗口内的历史和新近事务权重,使用闭合算子提高闭合模式挖掘的效率,设计使用最小支持度-最大误差率-衰减因子的三层架构避免概念漂移,设计一种均值衰减因子平衡算法的高查全率和高查准率.实验分析表明该算法适用于挖掘高密度、长模式的数据流;且具有较高的效率,在不同大小的滑动窗口条件下性能表现是稳态的,同时也优于其他同类算法.展开更多
概念漂移是动态流数据挖掘中一类常见的问题,但混杂噪声或训练样本规模过小而产生的伪概念漂移会引起与真实概念漂移相似的结果,即模型在线测试性能的不稳定波动,导致二者容易混淆,发生概念漂移的误报.针对流数据中真伪概念漂移的混淆问...概念漂移是动态流数据挖掘中一类常见的问题,但混杂噪声或训练样本规模过小而产生的伪概念漂移会引起与真实概念漂移相似的结果,即模型在线测试性能的不稳定波动,导致二者容易混淆,发生概念漂移的误报.针对流数据中真伪概念漂移的混淆问题,提出一种基于在线性能测试的概念漂移检测方法(concept drift detection method based on online performance test,简称CDPT).该方法将最新获得的数据集进行均匀分组,在每组子数据集上分别进行在线学习,同时记录每组子数据集训练测试得到的分类精度向量,并计算相邻学习时间单元之间的精度落差,依据测试精度下降阈值得到有效波动位点.然后采用交叉检验的方式整合不同分组中的有效波动位点,以消除流数据在线学习过程中由于训练样本过小导致模型不稳定造成的检测干扰,根据精度波动一致性得到一致波动位点.最后,通过跟踪在线学习分类准确率,得到一致波动位点邻域参照点的测试精度变化,比较一致波动位点邻域参照点对应的模型测试精度下降幅度及收敛情况,以有效检测一致波动位点当中真实的概念漂移位点.实验结果表明,该方法能够有效辨识流数据在线学习过程中发生的真实概念漂移,并能有效避免训练样本过小或者流数据中噪声对检测结果的负面影响,同时提高模型的泛化性能.展开更多
流数据作为一种新型数据,在各个领域均有应用,其快速、大量及持续不断的特点使得单遍精准扫描成为在线学习算法的必备特质.在流数据不断产生过程中,往往会发生概念漂移,目前对于概念漂移节点检测的研究相对成熟,然而实际问题中学习环境...流数据作为一种新型数据,在各个领域均有应用,其快速、大量及持续不断的特点使得单遍精准扫描成为在线学习算法的必备特质.在流数据不断产生过程中,往往会发生概念漂移,目前对于概念漂移节点检测的研究相对成熟,然而实际问题中学习环境因素朝不同方向发展往往会导致流数据中概念漂移类别的多样性,这给流数据挖掘及在线学习带来了新的挑战.针对这个问题,提出一种基于时序窗口的概念漂移类别检测(concept drift class detection based on time window,CD-TW)方法.该方法借助栈和队列对流数据进行存取,借助窗口机制对流数据进行分块学习.首先创建2个分别加载历史数据和当前数据的基础节点时序窗口,通过比较二者所包含数据的分布变化情况来检测概念漂移节点.然后创建加载漂移节点后部分数据的跨度时序窗口,通过分析该窗口中数据分布的稳定性检测漂移跨度,进而判断概念漂移类别.实验结果表明该方法不仅能够精确定位概念漂移节点,同时在漂移类别判断方面也表现出良好性能.展开更多
文摘提出类别属性数据流数据离群度量——加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categorical data streams based on frequent pattern).该算法通过动态发现和维护频繁模式来计算离群度,能够有效地处理高维类别属性数据流,并可进一步扩展到数值属性和混合属性数据流.对仿真数据集和真实数据集的实验检测均验证该算法具有良好的适用性和有效性.
文摘集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法.针对传统集成式数据流挖掘存在的缺陷,将人类的回忆和遗忘机制引入到数据流挖掘中,提出基于记忆的数据流挖掘模型MDSM(memorizing based data stream mining).该模型将基分类器看作是系统获得的知识,通过"回忆与遗忘"机制,不仅使历史上有用的基分类器因记忆强度高而保存在"记忆库"中,提高预测的稳定性,而且从"记忆库"中选取当前分类效果好的基分类器参与集成预测,以提高对概念变化的适应能力.基于MDSM模型,提出了一种集成式数据流挖掘算法MAE(memorizing based adaptive ensemble),该算法利用Ebbinghaus遗忘曲线对系统的遗忘机制进行设计,并利用选择性集成来模拟人类的"回忆"机制.与4种典型的数据流挖掘算法进行比较,结果表明:MAE算法分类精度高,对概念漂移的整体适应能力强,尤其对重复出现的概念漂移以及实际应用中存在的复杂概念漂移具有很好的适应能力.不仅能够快速适应新的概念变化,并且能够有效抵御随机的概念波动对系统性能的影响.
文摘数据流是随着时间顺序快速变化的和连续的,对其进行频繁模式挖掘时会出现概念漂移现象.在一些数据流应用中,通常认为最新的数据具有最大的价值.数据流挖掘会产生大量无用的模式,为了减少无用模式且保证无损压缩,需要挖掘闭合模式.因此,提出了一种基于时间衰减模型和闭合算子的数据流闭合模式挖掘方式TDMCS(Time-Decay-Model-based Closed frequent pattern mining on data Stream).该算法采用时间衰减模型来区分滑动窗口内的历史和新近事务权重,使用闭合算子提高闭合模式挖掘的效率,设计使用最小支持度-最大误差率-衰减因子的三层架构避免概念漂移,设计一种均值衰减因子平衡算法的高查全率和高查准率.实验分析表明该算法适用于挖掘高密度、长模式的数据流;且具有较高的效率,在不同大小的滑动窗口条件下性能表现是稳态的,同时也优于其他同类算法.
文摘概念漂移是动态流数据挖掘中一类常见的问题,但混杂噪声或训练样本规模过小而产生的伪概念漂移会引起与真实概念漂移相似的结果,即模型在线测试性能的不稳定波动,导致二者容易混淆,发生概念漂移的误报.针对流数据中真伪概念漂移的混淆问题,提出一种基于在线性能测试的概念漂移检测方法(concept drift detection method based on online performance test,简称CDPT).该方法将最新获得的数据集进行均匀分组,在每组子数据集上分别进行在线学习,同时记录每组子数据集训练测试得到的分类精度向量,并计算相邻学习时间单元之间的精度落差,依据测试精度下降阈值得到有效波动位点.然后采用交叉检验的方式整合不同分组中的有效波动位点,以消除流数据在线学习过程中由于训练样本过小导致模型不稳定造成的检测干扰,根据精度波动一致性得到一致波动位点.最后,通过跟踪在线学习分类准确率,得到一致波动位点邻域参照点的测试精度变化,比较一致波动位点邻域参照点对应的模型测试精度下降幅度及收敛情况,以有效检测一致波动位点当中真实的概念漂移位点.实验结果表明,该方法能够有效辨识流数据在线学习过程中发生的真实概念漂移,并能有效避免训练样本过小或者流数据中噪声对检测结果的负面影响,同时提高模型的泛化性能.
文摘流数据作为一种新型数据,在各个领域均有应用,其快速、大量及持续不断的特点使得单遍精准扫描成为在线学习算法的必备特质.在流数据不断产生过程中,往往会发生概念漂移,目前对于概念漂移节点检测的研究相对成熟,然而实际问题中学习环境因素朝不同方向发展往往会导致流数据中概念漂移类别的多样性,这给流数据挖掘及在线学习带来了新的挑战.针对这个问题,提出一种基于时序窗口的概念漂移类别检测(concept drift class detection based on time window,CD-TW)方法.该方法借助栈和队列对流数据进行存取,借助窗口机制对流数据进行分块学习.首先创建2个分别加载历史数据和当前数据的基础节点时序窗口,通过比较二者所包含数据的分布变化情况来检测概念漂移节点.然后创建加载漂移节点后部分数据的跨度时序窗口,通过分析该窗口中数据分布的稳定性检测漂移跨度,进而判断概念漂移类别.实验结果表明该方法不仅能够精确定位概念漂移节点,同时在漂移类别判断方面也表现出良好性能.