Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatur...Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatures from radiation beams (as the solar ones) with moderate intensities. Solar radiation cannot be used directly to feed thermodynamic cycles, and optical concentration must be applied to that goal. In general, reflection from mirrors is preferred to refraction by lenses in this case, because they have less optical aberrations. Concentration conveys very high temperatures in the receiver. However, the higher the temperature, the lower the efficiency of the solar thermal apparatus. Besides that, economy also suffers quite a lot when going to very high concentration factors, which is one of the main burdens in the development of Solar Thermal Energy. A new configuration of solar radiation concentrator is presented. It includes a salient innovation in the way the mirrors are given the right curvature by mechanical forces. Those mirrors are originally flat and do not need any special thermal treatment for this purpose. The whole device concept has been guided by the principle of thermoeconomic coherence, which requires similar efforts in all degrees of freedom that have strong influence in the performance and cost of the system. The paper shows the decision tree that has oriented the project, following the principle of equilibrium in efforts, which leads to a design window of moderate values in the main variables. The prototype of this new configuration has already been built, and the first stage of research is considered to be finished, because the prototype has shown excellent conditions to include selected (fitting) technologies at a very low cost.展开更多
CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is cl...CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.展开更多
High concentrated PV multi-junction solar cells (HCPV) likely present a favorable alternative to achieve low cost of energy. However, multi-junction solar cell has different characteristics which should be settled bef...High concentrated PV multi-junction solar cells (HCPV) likely present a favorable alternative to achieve low cost of energy. However, multi-junction solar cell has different characteristics which should be settled before they can be adapted for large scale energy generation. Peak energy consumption in Kuwait usually occurs in periods of utilizing air conditioning systems which are essentially used in almost all year around in harsh climate like Kuwait. Power consumed at peak times is more costly than power needed to satisfy loads at regular consumption times. The main goal of the present research is to increase HCPV solar cells’ efficiency, to decrease maximum power cost in Kuwait. Multi-junction solar cells performance in weather conditions of Kuwait is investigated employing a single diode equivalent circuit model. The model developed considers the impacts of concentration ratio as well as temperature. Most research in literature review usually neglects shunt resistance of the diode, however this resistance is taken into consideration in current developed theoretical model. To calibrate the present model, current predictions are compared with corresponding measured data provided by multi-junction solar cell manufacturer. The total root mean square errors in the present model predictions are about 1.8%. This means that current developed model of single diode model which takes into account shunt resistance impacts gives precise and reliable data. HCP electrical efficiency is noticed to rise as concentration increases but to a certain concentration value, then it begins to decrease. In addition, utilizing HCPV linked to grid satisfies great decrease in maximum load. Power produced from HCPV modules is utilized to provide energy needs to a family in normal Kuwaiti family home to evaluate HCPV environmental effects. HCPV modules slopes and areas are changed to accomplish peak energy production all over the year. Present results reveal that optimum power production corresponds to HCPV modules directed to south and 展开更多
The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obt...The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.展开更多
The aim of the investigation is to reveal possible causes of isolation and co-occurrence of the economically significant concentrations of gold and tin. Comparative analysis of the different-rank factors that influenc...The aim of the investigation is to reveal possible causes of isolation and co-occurrence of the economically significant concentrations of gold and tin. Comparative analysis of the different-rank factors that influenced migration and concentration of these elements show that different geochemical properties of Au and Sn are responsible for isolation of their big concentrations giving rise to independent metallogenic provinces, zones, and ore nodes. These differences resulted in individualization of the element migration ways to the level of ore concentration within the fluid-magmatie columns. Three main factors influenced the Au and Sn migration activity: different patterns of metal connection with the meh structure, different relation with oxygen, and different relation with other strong oxidizers. By the moment when ore-bearing fluid became isolated from magmas, the metallogenic signature of the melts, contrasting in redox-potential, had already been defined that was confirmed by the fact that tin ores associate predominantly with the granitoids of ilmenite series and gold ores - with those of magnetite series. The fluid-magmatic systems with an intermediate degree of the melt reduction-oxidation may be considered the potential producers of the combined metal concentrations. In these cases, the combined con- centrating of tin and gold is plagued by an opposite direction of the oxidation-reduction reactions when their most common minerals are formed: the main migration form of Sn^+2 must be oxidized (with cassiterite portioning) , and the forms of Au^+ or Au^+3 must be reduced (with native gold portioning). Probably, because of this the combined tin and gold concentrations are dominated by one of the metals with a tendency of accumulation in different-stage mineral complexes.展开更多
文摘Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatures from radiation beams (as the solar ones) with moderate intensities. Solar radiation cannot be used directly to feed thermodynamic cycles, and optical concentration must be applied to that goal. In general, reflection from mirrors is preferred to refraction by lenses in this case, because they have less optical aberrations. Concentration conveys very high temperatures in the receiver. However, the higher the temperature, the lower the efficiency of the solar thermal apparatus. Besides that, economy also suffers quite a lot when going to very high concentration factors, which is one of the main burdens in the development of Solar Thermal Energy. A new configuration of solar radiation concentrator is presented. It includes a salient innovation in the way the mirrors are given the right curvature by mechanical forces. Those mirrors are originally flat and do not need any special thermal treatment for this purpose. The whole device concept has been guided by the principle of thermoeconomic coherence, which requires similar efforts in all degrees of freedom that have strong influence in the performance and cost of the system. The paper shows the decision tree that has oriented the project, following the principle of equilibrium in efforts, which leads to a design window of moderate values in the main variables. The prototype of this new configuration has already been built, and the first stage of research is considered to be finished, because the prototype has shown excellent conditions to include selected (fitting) technologies at a very low cost.
文摘CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.
文摘High concentrated PV multi-junction solar cells (HCPV) likely present a favorable alternative to achieve low cost of energy. However, multi-junction solar cell has different characteristics which should be settled before they can be adapted for large scale energy generation. Peak energy consumption in Kuwait usually occurs in periods of utilizing air conditioning systems which are essentially used in almost all year around in harsh climate like Kuwait. Power consumed at peak times is more costly than power needed to satisfy loads at regular consumption times. The main goal of the present research is to increase HCPV solar cells’ efficiency, to decrease maximum power cost in Kuwait. Multi-junction solar cells performance in weather conditions of Kuwait is investigated employing a single diode equivalent circuit model. The model developed considers the impacts of concentration ratio as well as temperature. Most research in literature review usually neglects shunt resistance of the diode, however this resistance is taken into consideration in current developed theoretical model. To calibrate the present model, current predictions are compared with corresponding measured data provided by multi-junction solar cell manufacturer. The total root mean square errors in the present model predictions are about 1.8%. This means that current developed model of single diode model which takes into account shunt resistance impacts gives precise and reliable data. HCP electrical efficiency is noticed to rise as concentration increases but to a certain concentration value, then it begins to decrease. In addition, utilizing HCPV linked to grid satisfies great decrease in maximum load. Power produced from HCPV modules is utilized to provide energy needs to a family in normal Kuwaiti family home to evaluate HCPV environmental effects. HCPV modules slopes and areas are changed to accomplish peak energy production all over the year. Present results reveal that optimum power production corresponds to HCPV modules directed to south and
文摘The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.
文摘The aim of the investigation is to reveal possible causes of isolation and co-occurrence of the economically significant concentrations of gold and tin. Comparative analysis of the different-rank factors that influenced migration and concentration of these elements show that different geochemical properties of Au and Sn are responsible for isolation of their big concentrations giving rise to independent metallogenic provinces, zones, and ore nodes. These differences resulted in individualization of the element migration ways to the level of ore concentration within the fluid-magmatie columns. Three main factors influenced the Au and Sn migration activity: different patterns of metal connection with the meh structure, different relation with oxygen, and different relation with other strong oxidizers. By the moment when ore-bearing fluid became isolated from magmas, the metallogenic signature of the melts, contrasting in redox-potential, had already been defined that was confirmed by the fact that tin ores associate predominantly with the granitoids of ilmenite series and gold ores - with those of magnetite series. The fluid-magmatic systems with an intermediate degree of the melt reduction-oxidation may be considered the potential producers of the combined metal concentrations. In these cases, the combined con- centrating of tin and gold is plagued by an opposite direction of the oxidation-reduction reactions when their most common minerals are formed: the main migration form of Sn^+2 must be oxidized (with cassiterite portioning) , and the forms of Au^+ or Au^+3 must be reduced (with native gold portioning). Probably, because of this the combined tin and gold concentrations are dominated by one of the metals with a tendency of accumulation in different-stage mineral complexes.