命题逻辑可满足性(SAT)问题是计算机科学中的一个重要问题.近年来许多学者在这方面进行了大量的研究,提出了不少有效的算法.但是,很多实际问题如果用一组一阶逻辑公式来描述,往往更为自然.当解释的论域是一个固定大小的有限集合时,一阶...命题逻辑可满足性(SAT)问题是计算机科学中的一个重要问题.近年来许多学者在这方面进行了大量的研究,提出了不少有效的算法.但是,很多实际问题如果用一组一阶逻辑公式来描述,往往更为自然.当解释的论域是一个固定大小的有限集合时,一阶逻辑公式的可满足性问题可以等价地归约为 SAT 问题.为了利用现有的高效 SAT工具,提出了一种从一阶逻辑公式生成 SAT 问题实例的算法,并描述了一个自动的转换工具,给出了相应的实验结果.还讨论了通过增加公式来消除同构从而减小搜索空间的一些方法.实验表明,这一算法是有效的,可以用来解决数学研究和实际应用中的许多问题.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60033020 (国家自然科学基金)the National High-Tech Research and Development Plan of China under Grant No.2001AA114170 (国家高技术研究发展计划)
文摘命题逻辑可满足性(SAT)问题是计算机科学中的一个重要问题.近年来许多学者在这方面进行了大量的研究,提出了不少有效的算法.但是,很多实际问题如果用一组一阶逻辑公式来描述,往往更为自然.当解释的论域是一个固定大小的有限集合时,一阶逻辑公式的可满足性问题可以等价地归约为 SAT 问题.为了利用现有的高效 SAT工具,提出了一种从一阶逻辑公式生成 SAT 问题实例的算法,并描述了一个自动的转换工具,给出了相应的实验结果.还讨论了通过增加公式来消除同构从而减小搜索空间的一些方法.实验表明,这一算法是有效的,可以用来解决数学研究和实际应用中的许多问题.