Computational grids (CGs) are large scale networks of geographically distributed aggregates of resource clusters that may be contributed by distinct organizations for the provision of computing services such as mode...Computational grids (CGs) are large scale networks of geographically distributed aggregates of resource clusters that may be contributed by distinct organizations for the provision of computing services such as model simulation, compute cycle and data mining. Traditionally, the decision-making strategies underlying the grid management mechanisms rely on the physical view of the grid resource model. This entails the need for complex multi-dimensional search strategies and a considerable level of resource state information exchange between the grid management domains. In this paper we argue that with the adoption of service oriented grid architectures, a logical service-oriented view of the resource model provides a more appropriate level of abstraction to express the grid capacity to handle incoming service requests. In this respect, we propose a quantification model of the aggregated service capacity of the hosting environment that is updated based on the monitored state of the various environmental resources required by the hosted services. A comparative experimental validation of the model shows its performance towards enabling an adequate exploitation of provisioned services.展开更多
DNA 计算是应用分子生物技术进行计算的新方法。从理论上研究 DNA 计算方法,有利于推动理论计算科学的发展。本系列文章应用形式语言及自动机理论技术,系统地探讨了 DNA 分子的可计算性及其计算能力。本文主要介绍 DNA 分子粘接计算模...DNA 计算是应用分子生物技术进行计算的新方法。从理论上研究 DNA 计算方法,有利于推动理论计算科学的发展。本系列文章应用形式语言及自动机理论技术,系统地探讨了 DNA 分子的可计算性及其计算能力。本文主要介绍 DNA 分子粘接计算模型的文法结构和计算方法,探讨了不同粘接计算模型的计算能力,并证明了 DNA 有穷自动机与正规文法的等价性。展开更多
文摘Computational grids (CGs) are large scale networks of geographically distributed aggregates of resource clusters that may be contributed by distinct organizations for the provision of computing services such as model simulation, compute cycle and data mining. Traditionally, the decision-making strategies underlying the grid management mechanisms rely on the physical view of the grid resource model. This entails the need for complex multi-dimensional search strategies and a considerable level of resource state information exchange between the grid management domains. In this paper we argue that with the adoption of service oriented grid architectures, a logical service-oriented view of the resource model provides a more appropriate level of abstraction to express the grid capacity to handle incoming service requests. In this respect, we propose a quantification model of the aggregated service capacity of the hosting environment that is updated based on the monitored state of the various environmental resources required by the hosted services. A comparative experimental validation of the model shows its performance towards enabling an adequate exploitation of provisioned services.
文摘DNA 计算是应用分子生物技术进行计算的新方法。从理论上研究 DNA 计算方法,有利于推动理论计算科学的发展。本系列文章应用形式语言及自动机理论技术,系统地探讨了 DNA 分子的可计算性及其计算能力。本文主要介绍 DNA 分子粘接计算模型的文法结构和计算方法,探讨了不同粘接计算模型的计算能力,并证明了 DNA 有穷自动机与正规文法的等价性。