The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase com...The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes.展开更多
The disastrous Mw 9.3 (seismic moment 1.0 × 10^30 dyn/cm) earthquake that struck northwest Sumatra on 26 December 2004 and triggered -30 m high tsunami has rejuvenated the quest for identi- fying the forcing be...The disastrous Mw 9.3 (seismic moment 1.0 × 10^30 dyn/cm) earthquake that struck northwest Sumatra on 26 December 2004 and triggered -30 m high tsunami has rejuvenated the quest for identi- fying the forcing behind subduction related earthquakes around the world. Studies reveal that the stron- gest part (elastic core) of the oceanic lithosphere lie between 20 and 60 km depth beneath the upper (- 7 km thick) crustal layer, and compressive stress of GPa order is required to fail the rock-layers within the core zone. Here we present evidences in favor of an intraplate origin of mega-earthquakes right within the strong core part (at the interface of semi-brittle and brittle zone), and propose an alternate model exploring the flexing zone of the descending lithosphere as the nodal area for major stress accumulation. We believe that at high confining pressure and elevated temperature, unidirectional cyclic compressive stress loading in the flexing zone results in an increase of material yield strength through strain hardening, which transforms the rheology of the layer from semi-brittle to near-brittle state. The increased compres- sive stress field coupled with upward migration of the neutral surface (of zero stress fields) under non- coaxial deformation triggers shear crack. The growth of the shear crack is initially confined in the near-brittle domain, and propagates later through the more brittle crustal part of the descending oceanic lithosphere in the form of cataclastic failure,展开更多
An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into ...An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into the dilatational and distortional strain energy density, only the former is considered to contribute to the brittle fracture of rock in different loading cases. The theoretical prediction by this criterion shows that the SCFPZ is of asymmetric mulberry leaf in shape, which forms a shear-compression fracture kern. Dilatational strain energy density along the boundary of SCFPZ reaches its maximum value. The dimension of SCFPZ is governed by the ratio of K_Ⅱ to (K_Ⅰ.) The analytical results are then compared with those from literatures and the tests conducted on double edge cracked Brazilian disk subjected to diametrical compression. The obtained results are useful to the prediction of crack extension and to nonlinear analysis of shear-compressive fracture of brittle rock.展开更多
Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault...Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault zone can be divided into three deformation regions, namely, the north, central and south regions. The north region lies on the eastern side of the Northwest Yunnan extensional taphrogenic belt, which is characterized by the 3 sets of rift-depression basins striking NNW, NNE and near N-S since the Pliocene time, and on its western side is the Lanping-Yunlong compressive deformation belt of the Paleogene to Neogene; the deformation in the central region is characterized by dextral strike-slip or shearing. The east Yunnan Miocene compressive deformation belt lies on the eastern side of the fault in the south, and the Tengtiaohe tensile fault depression belt is located on its west. In terms of tectonic geomorphology, the aforementioned deformation is represented by basin-range tectonics in the north, linear faulted valley-basins in the central part and compressive (or tensional) basins in the south. Among them, the great variance in elevation of the planation surfaces on both sides of the Cangshan-Erhai fault suggests prominent normal faulting along the Red River fault since the Pliocene. From the viewpoint of spatial-temporal evolution, the main active portion of the fault was the southern segment in the Paleogene-Miocene-Pliocene, which is represented by “tearing” from south to north. The main active portion of the fault has migrated to the northern segment since the Pliocene, especially in the late Quaternary, which is characterized by extensional slip from north to southeast. The size of the deformation region and the magnitude of deformation show that the eastern plate of the Red River fault has been an active plate of the relative movement of blocks.展开更多
基金Funded by National Natural Science Foundation of China(Nos.51878003 and 51778513)Major Special Science and Technology Project of Hubei Province(No.2018AAA001)the National Basic Research Program of China(973 Program)(No.2015CB655101).
文摘The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes.
基金the Ministry of Earth Seiences,Govt.of India for the finaneial support
文摘The disastrous Mw 9.3 (seismic moment 1.0 × 10^30 dyn/cm) earthquake that struck northwest Sumatra on 26 December 2004 and triggered -30 m high tsunami has rejuvenated the quest for identi- fying the forcing behind subduction related earthquakes around the world. Studies reveal that the stron- gest part (elastic core) of the oceanic lithosphere lie between 20 and 60 km depth beneath the upper (- 7 km thick) crustal layer, and compressive stress of GPa order is required to fail the rock-layers within the core zone. Here we present evidences in favor of an intraplate origin of mega-earthquakes right within the strong core part (at the interface of semi-brittle and brittle zone), and propose an alternate model exploring the flexing zone of the descending lithosphere as the nodal area for major stress accumulation. We believe that at high confining pressure and elevated temperature, unidirectional cyclic compressive stress loading in the flexing zone results in an increase of material yield strength through strain hardening, which transforms the rheology of the layer from semi-brittle to near-brittle state. The increased compres- sive stress field coupled with upward migration of the neutral surface (of zero stress fields) under non- coaxial deformation triggers shear crack. The growth of the shear crack is initially confined in the near-brittle domain, and propagates later through the more brittle crustal part of the descending oceanic lithosphere in the form of cataclastic failure,
基金Project(50274074) supported by the National Natural Science Foundation of China project(04JJ6030) supported by theNatural Science Foundation of Hunan Province
文摘An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into the dilatational and distortional strain energy density, only the former is considered to contribute to the brittle fracture of rock in different loading cases. The theoretical prediction by this criterion shows that the SCFPZ is of asymmetric mulberry leaf in shape, which forms a shear-compression fracture kern. Dilatational strain energy density along the boundary of SCFPZ reaches its maximum value. The dimension of SCFPZ is governed by the ratio of K_Ⅱ to (K_Ⅰ.) The analytical results are then compared with those from literatures and the tests conducted on double edge cracked Brazilian disk subjected to diametrical compression. The obtained results are useful to the prediction of crack extension and to nonlinear analysis of shear-compressive fracture of brittle rock.
文摘Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault zone can be divided into three deformation regions, namely, the north, central and south regions. The north region lies on the eastern side of the Northwest Yunnan extensional taphrogenic belt, which is characterized by the 3 sets of rift-depression basins striking NNW, NNE and near N-S since the Pliocene time, and on its western side is the Lanping-Yunlong compressive deformation belt of the Paleogene to Neogene; the deformation in the central region is characterized by dextral strike-slip or shearing. The east Yunnan Miocene compressive deformation belt lies on the eastern side of the fault in the south, and the Tengtiaohe tensile fault depression belt is located on its west. In terms of tectonic geomorphology, the aforementioned deformation is represented by basin-range tectonics in the north, linear faulted valley-basins in the central part and compressive (or tensional) basins in the south. Among them, the great variance in elevation of the planation surfaces on both sides of the Cangshan-Erhai fault suggests prominent normal faulting along the Red River fault since the Pliocene. From the viewpoint of spatial-temporal evolution, the main active portion of the fault was the southern segment in the Paleogene-Miocene-Pliocene, which is represented by “tearing” from south to north. The main active portion of the fault has migrated to the northern segment since the Pliocene, especially in the late Quaternary, which is characterized by extensional slip from north to southeast. The size of the deformation region and the magnitude of deformation show that the eastern plate of the Red River fault has been an active plate of the relative movement of blocks.