针对农田监测区域大、监测节点能量有限以及异常事件具有偶发性等特点,提出了一种基于改进压缩采样匹配追踪的农田信息异常事件检测算法(DP-CoSaMP)。针对传统压缩采样匹配追踪(Compressive sampling matching pursuit,Co Sa MP)算法中...针对农田监测区域大、监测节点能量有限以及异常事件具有偶发性等特点,提出了一种基于改进压缩采样匹配追踪的农田信息异常事件检测算法(DP-CoSaMP)。针对传统压缩采样匹配追踪(Compressive sampling matching pursuit,Co Sa MP)算法中相似原子选择和稀疏度要求已知问题,引进Dice系数有效区分原子相关性,保证选择最优原子;利用峰值信噪比(Peak signal to noise ratio,PSNR)与匹配信号残差具有相似变化趋势,动态调整算法迭代次数,避免稀疏度获取困难问题。仿真实验结果表明,本文算法异常事件检测成功率较现有算法提高了20%,网络能耗降低了15%,平均检测时间减少了50%。展开更多
文摘针对农田监测区域大、监测节点能量有限以及异常事件具有偶发性等特点,提出了一种基于改进压缩采样匹配追踪的农田信息异常事件检测算法(DP-CoSaMP)。针对传统压缩采样匹配追踪(Compressive sampling matching pursuit,Co Sa MP)算法中相似原子选择和稀疏度要求已知问题,引进Dice系数有效区分原子相关性,保证选择最优原子;利用峰值信噪比(Peak signal to noise ratio,PSNR)与匹配信号残差具有相似变化趋势,动态调整算法迭代次数,避免稀疏度获取困难问题。仿真实验结果表明,本文算法异常事件检测成功率较现有算法提高了20%,网络能耗降低了15%,平均检测时间减少了50%。