Many construction projects are met with stringent timelines or the threat of exorbitant liquidated damages. In addition, construction schedulers are frequently forced to incorporate aggressive schedule compression tec...Many construction projects are met with stringent timelines or the threat of exorbitant liquidated damages. In addition, construction schedulers are frequently forced to incorporate aggressive schedule compression techniques. As already discussed by previous researchers, these schedule compression techniques have direct impacts on project productivity and quality defects.Researchers have also pointed out that schedule compression will affect safety incidents such as Occupational Safety & Health Administration recordable injuries and near misses over long project durations. However, most of the existing studies treated safety as a subcategory of project productivity and project quality, and minimal research has been done to directly quantify the effect of schedule compression on safety at the project level.Therefore, in this research, we conducted a survey and statistical analysis to investigate the relationship between schedule compression and safety in construction projects.We interviewed various members of the Houston construction community from both industrial and non-industrial roles. Statistical analysis was used to identify factors that have significant impacts on the occurrence of safety incidents at an industry specific level.展开更多
The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineerin...The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineering. In this paper, a general methodology for the optimal synthesis of the CRS, which simultaneously integrates CRS and Heat Exchanger Networks(HEN) to minimize the total compressor shaft work consumption based on an MINLP model, has been proposed. The major contribution of this method is in addressing the optimal design of refrigeration cycle with variable refrigeration temperature levels. The method can be used to make major decisions in the CRS design, such as the number of levels, temperature levels, and heat transfer duties. The performance of the developed methodology has been illustrated with a case study of an ethylene CRS in an industrial ethylene plant, and the optimal solution has been examined by rigorous simulations in Aspen Plus to verify its feasibility and consistency.展开更多
文摘Many construction projects are met with stringent timelines or the threat of exorbitant liquidated damages. In addition, construction schedulers are frequently forced to incorporate aggressive schedule compression techniques. As already discussed by previous researchers, these schedule compression techniques have direct impacts on project productivity and quality defects.Researchers have also pointed out that schedule compression will affect safety incidents such as Occupational Safety & Health Administration recordable injuries and near misses over long project durations. However, most of the existing studies treated safety as a subcategory of project productivity and project quality, and minimal research has been done to directly quantify the effect of schedule compression on safety at the project level.Therefore, in this research, we conducted a survey and statistical analysis to investigate the relationship between schedule compression and safety in construction projects.We interviewed various members of the Houston construction community from both industrial and non-industrial roles. Statistical analysis was used to identify factors that have significant impacts on the occurrence of safety incidents at an industry specific level.
基金Supported by the National Natural Science Foundation of China(21676183)
文摘The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineering. In this paper, a general methodology for the optimal synthesis of the CRS, which simultaneously integrates CRS and Heat Exchanger Networks(HEN) to minimize the total compressor shaft work consumption based on an MINLP model, has been proposed. The major contribution of this method is in addressing the optimal design of refrigeration cycle with variable refrigeration temperature levels. The method can be used to make major decisions in the CRS design, such as the number of levels, temperature levels, and heat transfer duties. The performance of the developed methodology has been illustrated with a case study of an ethylene CRS in an industrial ethylene plant, and the optimal solution has been examined by rigorous simulations in Aspen Plus to verify its feasibility and consistency.