期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
非定常Stokes方程的最小二乘混合有限元方法
1
作者 陈宁 顾海明 《青岛科技大学学报(自然科学版)》 CAS 2006年第5期462-466,共5页
通过引入一个新的速度变量可以将非定常可压缩的Stokes方程转化为一个一阶方程组,并对这个一阶方程组采用最小二乘混合有限元方法进行计算,得到了L2模的最优估计。
关键词 一阶方程组 最小二乘混合有限元方法 非定常stokes方程
下载PDF
三维可压流Stokes近似系统的唯一可解性 被引量:4
2
作者 郭蒙 郭真华 《黑龙江大学自然科学学报》 CAS 北大核心 2010年第5期611-618,共8页
研究三维有界光滑区域上的Stokes近似系统的唯一可解性问题。首先考虑线性化系统强解的全局存在性,其次通过线性化系统构造迭代逼近系统,并对迭代逼近系统的强解做一致估计;最后得到迭代逼近解序列的收敛性。证明了当初始值满足一个兼... 研究三维有界光滑区域上的Stokes近似系统的唯一可解性问题。首先考虑线性化系统强解的全局存在性,其次通过线性化系统构造迭代逼近系统,并对迭代逼近系统的强解做一致估计;最后得到迭代逼近解序列的收敛性。证明了当初始值满足一个兼容性条件时Stokes近似系统初边值问题局部强解的存在唯一性。 展开更多
关键词 三维可压流stokes近似系统 局部强解 唯一可解性
下载PDF
可压缩Navier-Stokes方程的压力梯度局部投影间断有限元法 被引量:15
3
作者 骆艳 冯民富 《应用数学和力学》 CSCD 北大核心 2008年第2期157-168,共12页
将压力梯度投影与间断有限元法相结合,对可压缩线性化N-S方程提出了一种稳定化间断有限元格式.证明了此格式在速度和压力有限元空间无需满足B-B型条件的情况下,解的存在性和唯一性,以及相应的误差估计.
关键词 间断Galerkin有限元法 压力梯度投影 可压缩的N—S问题 误差估计
下载PDF
Remarks on One-Dimensional Compressible Navier-Stokes Equations with Density-Dependent Viscosity and Vacuum 被引量:7
4
作者 Zhen Hua GUO Chang Jiang ZHU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第10期2015-2030,共16页
The Navier-Stokes system for one-dimensional compressible fluids with density-dependent viscosities when the initial density connects to vacuum continuously is considered in the present paper. When the viscosity coeff... The Navier-Stokes system for one-dimensional compressible fluids with density-dependent viscosities when the initial density connects to vacuum continuously is considered in the present paper. When the viscosity coefficient u is proportional to pθ with 0 〈 θ 〈 1, the global existence and the uniqueness of weak solutions are proved which improves the previous results in [Vong, S. W., Yang, T., Zhu, C. J.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum II. J. Differential Equations, 192(2), 475-501 (2003)]. Here p is the density. Moreover, a stabilization rate estimate for the density as t → +∞ for any θ 〉 0 is also given. 展开更多
关键词 compressible Navier-stokes equations density-dependent viscosity VACUUM asymptotic behavior
原文传递
COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY,VACUUM AND GRAVITATIONAL FORCE IN THE CASE OF GENERAL PRESSURE 被引量:5
5
作者 姚磊 汪文军 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期801-817,共17页
This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational fo... This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved. 展开更多
关键词 compressible Navier-stokes equations VACUUM a priori estimates a globalweak solution EXISTENCE
下载PDF
ASYMPTOTIC BEHAVIOR OF SOLUTIONS TOWARD THE SUPERPOSITION OF CONTACT DISCONTINUITY AND SHOCK WAVE FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH FREE BOUNDARY 被引量:4
6
作者 Hakho Hong Feimin Huang 《Acta Mathematica Scientia》 SCIE CSCD 2012年第1期389-412,共24页
A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is establishe... A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is established under some smallness conditions. To do this, we first construct a new viscous contact wave such that the momentum equation is satisfied exactly and then determine the shift of the viscous shock wave. By using them together with an inequality concerning the heat kernel in the half space, we obtain the desired a priori estimates. The proof is based on the elementary energy method by the anti-derivative argument. 展开更多
关键词 compressible Navier-stokes equations free boundary superposition of shockwave and contact discontinuity STABILITY
下载PDF
GLOBAL CLASSICAL SOLUTION TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY 被引量:4
7
作者 叶嵎林 《Acta Mathematica Scientia》 SCIE CSCD 2016年第5期1419-1432,共14页
In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in s... In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution. 展开更多
关键词 global existence classical solution compressible Navier-stokes equations density-dependent viscosity VACUUM
下载PDF
MAXIMAL ATTRACTORS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS OF VISCOUS AND HEAT CONDUCTIVE FLUID 被引量:3
8
作者 秦玉明 宋锦萍 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期289-311,共23页
This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn i... This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established. 展开更多
关键词 compressible Navier stokes equations polytropic viscous ideal gas spheri-cally symmetric solutions absorbing set maximal attractor
下载PDF
用于可压缩Navier-Stokes方程的格子Boltzmann模型 被引量:3
9
作者 闫广武 王波 《吉林大学自然科学学报》 CAS CSCD 北大核心 2001年第1期15-18,共4页
通过引入多速度和多能级 ,解除了标准格子 Boltzmann方法用于可压缩 Navier-Stokes方程存在低 Mach限制和一阶精度的限制 。
关键词 格子BOLTZMANN方法 可压缩NAVIER-stokes方程 完全气体 计算流体力学 能级 可压缩流体力学 速度
下载PDF
GLOBAL WEAK SOLUTION TO COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY,VACUUM AND GRAVITATIONAL FORCE 被引量:3
10
作者 Sun Yuejuan (Dept.of Math.,Shangqiu Normal University,Shangqiu 476000,Henan) Zheng Xiying (Dept.of Math.and Physics,Yellow River Technical College,Zhengzhou 450052) 《Annals of Differential Equations》 2008年第1期34-45,共12页
Recently,the global existence of weak solutions to the compressible Navier-Stokes equations with vacuum has attracted much attention.In this paper,we study the one-dimension isentropic Navier-Stokes equations with gra... Recently,the global existence of weak solutions to the compressible Navier-Stokes equations with vacuum has attracted much attention.In this paper,we study the one-dimension isentropic Navier-Stokes equations with gravitational force and fixed boundary condition when the density connects with vacuum discontinuously.We prove the global existence and the uniqueness of weak solution,requiring less regularity of the initial data. 展开更多
关键词 compressible Navier-stokes equations VACUUM a priori estimates a global weak solution EXISTENCE
原文传递
A BLOW-UP CRITERION FOR COMPRESSIBLE VISCOUS HEAT-CONDUCTIVE FLOWS 被引量:3
11
作者 江松 欧耀彬 《Acta Mathematica Scientia》 SCIE CSCD 2010年第6期1851-1864,共14页
We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the lo... We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows. 展开更多
关键词 blow-up criteria strong solutions compressible Navier-stokes equations heat-conductive flows
下载PDF
可压缩Navier-Stokes方程无滑移边值问题的高正则整体弱解
12
作者 黄祥娣 辛周平 闫伟 《中国科学:数学》 CSCD 北大核心 2024年第12期1979-2008,共30页
本文建立无滑移边界条件下可压缩Navier-Stokes方程的高正则弱解的整体存在性.Lions和Feireisl分别通过引入有效粘性通量和振荡缺陷测度,在无滑移边界条件下建立了允许真空初值的有限能量的整体弱解,而Hoff研究了当定义域为全空间或半... 本文建立无滑移边界条件下可压缩Navier-Stokes方程的高正则弱解的整体存在性.Lions和Feireisl分别通过引入有效粘性通量和振荡缺陷测度,在无滑移边界条件下建立了允许真空初值的有限能量的整体弱解,而Hoff研究了当定义域为全空间或半空间且具有Navier滑移边界条件时的具有更高正则性的整体弱解理论.然而在无滑移边界条件下,具有更高正则性的整体弱解的存在性理论仍然未知.本文首次证明了当区域为二维实心圆盘,初始密度允许真空且初始能量足够小时,带有无滑移边界条件的可压缩等熵Navier-Stokes方程至少存在一个高正则性的整体弱解.该弱解的正则性介于由Lions和Feireisl引入的有限能量的弱解和Hoff的密度有界的弱解之间.本文的主要想法是利用圆盘的精确Green函数结构,将有效粘性通量分解为压力项、边界项和冗余项.为了控制边界项,我们一个关键的观察是利用圆盘的几何结构来精确控制有效粘性通量在边界的积分. 展开更多
关键词 可压缩NAVIER-stokes方程 无滑移边界 弱解
原文传递
一维可压缩Navier-Stokes方程组弱解的能量守恒
13
作者 朱孟孟 苏云飞 《纯粹数学与应用数学》 2024年第3期499-509,共11页
本文主要研究的是对任意的t>0,一维周期区域中可压缩Navier-Stokes方程组的弱解在某种特定的条件下满足能量守恒.具体来说,通过运用交换子估计的方法以及使弱解满足某种足够的正则性条件,从而可以得到在一维周期区域中弱解满足相应... 本文主要研究的是对任意的t>0,一维周期区域中可压缩Navier-Stokes方程组的弱解在某种特定的条件下满足能量守恒.具体来说,通过运用交换子估计的方法以及使弱解满足某种足够的正则性条件,从而可以得到在一维周期区域中弱解满足相应的能量等式. 展开更多
关键词 可压缩Navier-stokes方程组 弱解 能量守恒
下载PDF
QUASI-NEUTRAL LIMIT OF THE BIPOLAR NAVIER-STOKES-POISSON SYSTEM
14
作者 杨秀绘 《Acta Mathematica Scientia》 SCIE CSCD 2011年第4期1272-1280,共9页
This paper is concerned with the quasi-neutral limit of the bipolar NavierStokes-Poisson system. It is rigorously proved, by introducing the new modulated energy functional and using the refined energy analysis, that ... This paper is concerned with the quasi-neutral limit of the bipolar NavierStokes-Poisson system. It is rigorously proved, by introducing the new modulated energy functional and using the refined energy analysis, that the strong solutions of the bipolar Navier-Stokes-Poisson system converge to the strong solution of the compressible NavierStokes equations as the Debye length goes to zero. Moreover, if we let the viscous coefficients and the Debye length go to zero simultaneously, then we obtain the convergence of the strong solutions of bipolar Navier-Stokes-Poisson system to the strong solution of the compressible Euler equations. 展开更多
关键词 bipolar Navier-stokes-Poisson system compressible Navier-stokes equations compressible Euler equations modulated energy functional
下载PDF
On scaling invariance and type-Ⅰ singularities for the compressible Navier-Stokes equations 被引量:2
15
作者 Zhen Lei Zhouping Xin 《Science China Mathematics》 SCIE CSCD 2019年第11期2271-2286,共16页
We find a new scaling invariance of the barotropic compressible Navier-Stokes equations. Then it is shown that type-Ⅰ singularities of solutions with■ can never happen at time T for all adiabatic number γ 1. Here ... We find a new scaling invariance of the barotropic compressible Navier-Stokes equations. Then it is shown that type-Ⅰ singularities of solutions with■ can never happen at time T for all adiabatic number γ 1. Here κ > 0 does not depend on the initial data.This is achieved by proving the regularity of solutions under■ This new scaling invariance also motivates us to construct an explicit type-Ⅱ blowup solution for γ > 1. 展开更多
关键词 type-Ⅰ singularity compressible NAVIER-stokes equations SCALING INVARIANCE BLOWUP rate
原文传递
Discontinuous element pressure gradient stabilizations for compressible Navier-Stokes equations based on local projections 被引量:2
16
作者 骆艳 冯民富 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第2期171-183,共13页
A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable... A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is Obtained. 展开更多
关键词 discontinuous finite element methods pressure gradient projection methods compressible Navier-stokes equations error estimation
下载PDF
GLOBAL CLASSICAL SOLUTIONS TO THE 3-D ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH GENERAL INITIAL ENERGY 被引量:2
17
作者 张培欣 邓雪梅 赵俊宁 《Acta Mathematica Scientia》 SCIE CSCD 2012年第6期2141-2160,共20页
We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the 3-D compressible Navier-Stokes equations under the assumption that the initial density ||po||L∞ is appropriate... We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the 3-D compressible Navier-Stokes equations under the assumption that the initial density ||po||L∞ is appropriate small and 1 〈 γ 〈 6/5. Here the initial density could have vacuum and we do not require that the initial energy is small. 展开更多
关键词 compressible Navier-stokes equations global classical solutions general initial energy
下载PDF
LOCAL WELL-POSEDNESS TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY 被引量:1
18
作者 叶嵎林 窦昌胜 酒全森 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期851-871,共21页
In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity ... In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρ^β with β≥0. Note that the initial data can be arbitrarily large to contain vacuum states. 展开更多
关键词 Existence and uniqueness classical solution compressible Navier-stokes equations densitv-deoendent viscosity VACUUM
下载PDF
Blow-up of Viscous Compressible Reactive Self-gravitating Gas 被引量:1
19
作者 Fei JIANG Zhong TAN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第2期401-408,共8页
In this paper, we prove some results concerning blow-up of viscous compressible reactive (selfgravitating) flows when the initial density is compactly supported and the other initial value satisfy proper conditions.... In this paper, we prove some results concerning blow-up of viscous compressible reactive (selfgravitating) flows when the initial density is compactly supported and the other initial value satisfy proper conditions. It extends the work of Xin and Cho to the case of viscous compressible reactive self-gravitating flows equations. We control the lower bound of second moment by total energy and obtain the precise relationship between the size of the support of initial density and the existence time. 展开更多
关键词 compressible Naviver-stokes equations smooth solution reactive self-gravitating gas
原文传递
ZERO DISSIPATION LIMIT TO A RIEMANN SOLUTION FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM OF GENERAL GAS 被引量:1
20
作者 Hakho HONG 王腾 《Acta Mathematica Scientia》 SCIE CSCD 2017年第5期1177-1208,共32页
For the general gas including ideal polytropic gas, we study the zero dissipation limit problem of the full 1-D compressible Navier-Stokes equations toward the superposition of contact discontinuity and two rarefactio... For the general gas including ideal polytropic gas, we study the zero dissipation limit problem of the full 1-D compressible Navier-Stokes equations toward the superposition of contact discontinuity and two rarefaction waves. In the case of both smooth and Riemann initial data, we show that if the solutions to the corresponding Euler system consist of the composite wave of two rarefaction wave and contact discontinuity, then there exist solutions to Navier-Stokes equations which converge to the Riemman solutions away from the initial layer with a decay rate in any fixed time interval as the viscosity and the heat-conductivity coefficients tend to zero. The proof is based on scaling arguments, the construction of the approximate profiles and delicate energy estimates. Notice that we have no need to restrict the strengths of the contact discontinuity and rarefaction waves to be small. 展开更多
关键词 zero dissipation limit compressible Navier-stokes equations contact discontinuity rarefaction wave general gas
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部