建立了基于柔性多体动力学思想的综合气弹分析方法,以SA 349/2"小羚羊"直升机为算例,对其典型飞行状态,包括一个小前进比状态,一个大前进比状态以及一个高速稳态转弯状态进行载荷计算。对于两个稳态前飞状态,采用自由尾迹模...建立了基于柔性多体动力学思想的综合气弹分析方法,以SA 349/2"小羚羊"直升机为算例,对其典型飞行状态,包括一个小前进比状态,一个大前进比状态以及一个高速稳态转弯状态进行载荷计算。对于两个稳态前飞状态,采用自由尾迹模型计算诱导入流,通过配平迭代获得旋翼载荷;对于稳态转弯状态,将实测配平量作为输入量,采用G lauert线性入流模型计算诱导速度。在与试飞数据以及CAM RAD II计算结果的对比中,稳态前飞状态的计算结果与实测数据吻合较好,与CAM RAD II精度相当;对于接近飞行极限的高速转弯状态,本文计算值捕捉到了动态失速条件下旋翼载荷变化的主要特征。展开更多
This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two he...This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.展开更多
文摘建立了基于柔性多体动力学思想的综合气弹分析方法,以SA 349/2"小羚羊"直升机为算例,对其典型飞行状态,包括一个小前进比状态,一个大前进比状态以及一个高速稳态转弯状态进行载荷计算。对于两个稳态前飞状态,采用自由尾迹模型计算诱导入流,通过配平迭代获得旋翼载荷;对于稳态转弯状态,将实测配平量作为输入量,采用G lauert线性入流模型计算诱导速度。在与试飞数据以及CAM RAD II计算结果的对比中,稳态前飞状态的计算结果与实测数据吻合较好,与CAM RAD II精度相当;对于接近飞行极限的高速转弯状态,本文计算值捕捉到了动态失速条件下旋翼载荷变化的主要特征。
文摘This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.