Crustal structures of nine broad tectonic units in China, except the Tarim craton, are derived from 18 seismic refraction profiles including 12 geoscience transects. Abundances of 63 major, trace and rare earth elemen...Crustal structures of nine broad tectonic units in China, except the Tarim craton, are derived from 18 seismic refraction profiles including 12 geoscience transects. Abundances of 63 major, trace and rare earth elements in the upper crust in East China are estimated. The estimates are based on sampling of 11 451 individual rock samples over an area of 950 000 km2, from which 905 large composite samples are prepared and analyzed by 13 methods. The middle, lower and total crust compositions of East China are also estimated from studies of exposed crustal cross sections and granulite xenoliths and by correlation of seismic data with lithologies. All the tectonic units except the Tarim craton and the Qinling orogen show a four-layered crustal structure, consisting of the upper, middle, upper lower, and lowermost crusts. P-wave velocities of the bulk lower crust and total crust are 6.8–7.0 and 6:4–6.5 km/s, respectively. They are slower by 0.2–0.4 km/s than the global averages. The bulk lower crust is suggested to be intermediate with 58% SiO2 in East China. The results contrast with generally accepted global models of mafic lower crusi. The proposed total crust composition in East China is also more evolved than previous estimates and characterized by SiO2=64%, a significant negative Eu anomaly (Eu/Eu* = 0.80), deficits in Sr and transition metals, a near-arc magma La/Nd ratio (3.0), and a calculatedμ(238U/204Pb) value of 5. In addition, it has the following ratios of element pairs exhibiting similar compatibility, which are identical or close to the primitive mantle values: Zr/Hf=37, Nb/Ta=17.5, Ba/Th=87, K/Pb=0.12x104, Rb/Cs=25, Ba/Rb=8.94, Sn/Sm=0.31, Se/Cd=1.64, La/ As=10.3, Ce/Sb=271, Pb/Bi=57, Rb/TI=177, Er/Ag=52, Cu/Au=3.2×104, Sm/Mo=7.5, Nd/W=40, CI/Li=10.8, F/Nd=21.9, and La/B=1.8.展开更多
Geochemical behavior of chemical elements is studied in a dolomitite weathering profile in upland of karst terrain in northern Guizhou. Two stages can be recognized during the process of in situ weathering of dolomiti...Geochemical behavior of chemical elements is studied in a dolomitite weathering profile in upland of karst terrain in northern Guizhou. Two stages can be recognized during the process of in situ weathering of dolomitite: the stage of sedentary accumulation of leaching residue of dolomitite and the stage of chemical weathering evolution of sedentary soil. Ni, Cr, Mo, W and Ti are the least mobile elements with reference to Al. The geochemical behavior of REE is similar to that observed in weathering of other types of rocks. Fractionation of REE is noticed during weathering, and the two layers of REE enrichments are thought to result from downward movement of the weathering front in response to changes in the environment. It is considered that the chemistry of the upper part of the profile, which was more intensively weathered, is representative of the mobile components of the upper curst at the time the dolomitite was formed, while the less weathered lower profile is chemically representative of the immobile constitution. Like glacial till and loess, the 'insoluble' materials in carbonate rocks originating from chemical sedimentation may also provide valuable information about the average chemical composition of the upper continental crust.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 49625305, 49573183, 49673184, 49794043)the State Commission of Education, the Ministry of Geology and Mineral Resources of China (Grant No. 850514)the Open Laborat
文摘Crustal structures of nine broad tectonic units in China, except the Tarim craton, are derived from 18 seismic refraction profiles including 12 geoscience transects. Abundances of 63 major, trace and rare earth elements in the upper crust in East China are estimated. The estimates are based on sampling of 11 451 individual rock samples over an area of 950 000 km2, from which 905 large composite samples are prepared and analyzed by 13 methods. The middle, lower and total crust compositions of East China are also estimated from studies of exposed crustal cross sections and granulite xenoliths and by correlation of seismic data with lithologies. All the tectonic units except the Tarim craton and the Qinling orogen show a four-layered crustal structure, consisting of the upper, middle, upper lower, and lowermost crusts. P-wave velocities of the bulk lower crust and total crust are 6.8–7.0 and 6:4–6.5 km/s, respectively. They are slower by 0.2–0.4 km/s than the global averages. The bulk lower crust is suggested to be intermediate with 58% SiO2 in East China. The results contrast with generally accepted global models of mafic lower crusi. The proposed total crust composition in East China is also more evolved than previous estimates and characterized by SiO2=64%, a significant negative Eu anomaly (Eu/Eu* = 0.80), deficits in Sr and transition metals, a near-arc magma La/Nd ratio (3.0), and a calculatedμ(238U/204Pb) value of 5. In addition, it has the following ratios of element pairs exhibiting similar compatibility, which are identical or close to the primitive mantle values: Zr/Hf=37, Nb/Ta=17.5, Ba/Th=87, K/Pb=0.12x104, Rb/Cs=25, Ba/Rb=8.94, Sn/Sm=0.31, Se/Cd=1.64, La/ As=10.3, Ce/Sb=271, Pb/Bi=57, Rb/TI=177, Er/Ag=52, Cu/Au=3.2×104, Sm/Mo=7.5, Nd/W=40, CI/Li=10.8, F/Nd=21.9, and La/B=1.8.
文摘Geochemical behavior of chemical elements is studied in a dolomitite weathering profile in upland of karst terrain in northern Guizhou. Two stages can be recognized during the process of in situ weathering of dolomitite: the stage of sedentary accumulation of leaching residue of dolomitite and the stage of chemical weathering evolution of sedentary soil. Ni, Cr, Mo, W and Ti are the least mobile elements with reference to Al. The geochemical behavior of REE is similar to that observed in weathering of other types of rocks. Fractionation of REE is noticed during weathering, and the two layers of REE enrichments are thought to result from downward movement of the weathering front in response to changes in the environment. It is considered that the chemistry of the upper part of the profile, which was more intensively weathered, is representative of the mobile components of the upper curst at the time the dolomitite was formed, while the less weathered lower profile is chemically representative of the immobile constitution. Like glacial till and loess, the 'insoluble' materials in carbonate rocks originating from chemical sedimentation may also provide valuable information about the average chemical composition of the upper continental crust.