The water soluble coal tar pitches(WS-CTPs)were successfully prepared and used to construct the MnO_(2)@C composite materials by a hydrothermal method.It is interestingly observed that the structures and morphologies ...The water soluble coal tar pitches(WS-CTPs)were successfully prepared and used to construct the MnO_(2)@C composite materials by a hydrothermal method.It is interestingly observed that the structures and morphologies of MnO_(2)@C materials can be controlled by controlling the dosages of WS-CTPs and KMnO4.Meanwhile,it is aware that MnO_(2)exists in the MnO_(2)@C materials in an amorphous state.Compared with MnO_(2),MnO_(2)@C materials output a remarkable improvement in electrochemical performance.For instance,MnO_(2)@C-0.3 shows the storage capacity at 965.7 mA h g^(−1)after 300 cycles at a current density of 0.1 A g^(−1).In addition,after 600 cycles at a current density of 1.0 A g^(−1),the storage capacity of MnO_(2)@C-0.3 still keeps 450.3 mA h g^(−1),indicating that MnO_(2)@C-0.3 owns tremendous cycle stability at a high current density.In view of the fact that the coal tar pitches possess great cost advantages,the strategy of using WS-CTPs as a carbon source to cover the metal oxides is a competitive way to expand the application of metal oxides in the fabrication of electrodes of LIBs.展开更多
This paper studies the countermeasure design problems of distributed resilient time-varying formation-tracking control for multi-UAV systems with single-way communications against composite attacks,including denial-of...This paper studies the countermeasure design problems of distributed resilient time-varying formation-tracking control for multi-UAV systems with single-way communications against composite attacks,including denial-of-services(DoS)attacks,false-data injection attacks,camouflage attacks,and actuation attacks(AAs).Inspired by the concept of digital twin,a new two-layered protocol equipped with a safe and private twin layer(TL)is proposed,which decouples the above problems into the defense scheme against DoS attacks on the TL and the defense scheme against AAs on the cyber-physical layer.First,a topologyrepairing strategy against frequency-constrained DoS attacks is implemented via a Zeno-free event-triggered estimation scheme,which saves communication resources considerably.The upper bound of the reaction time needed to launch the repaired topology after the occurrence of DoS attacks is calculated.Second,a decentralized adaptive and chattering-relief controller against potentially unbounded AAs is designed.Moreover,this novel adaptive controller can achieve uniformly ultimately bounded convergence,whose error bound can be given explicitly.The practicability and validity of this new two-layered protocol are shown via a simulation example and a UAV swarm experiment equipped with both Ultra-WideBand and WiFi communication channels.展开更多
Electricity generated through coal-based Thermal Power Plants(TPPs)has played a pivotal role in shaping modern civiliza-tion,revolutionizing industries,and improving the quality of life for billions of people worldwid...Electricity generated through coal-based Thermal Power Plants(TPPs)has played a pivotal role in shaping modern civiliza-tion,revolutionizing industries,and improving the quality of life for billions of people worldwide.These TPPs contribute to about 37%-40%of the global energy requirements.Energy production,in turn,has a direct impact on the economy of any country.Apart from this boon to humankind,these TPPs combusting coal as their primary fuel also have specific environmen-tal impacts,the major ones being water,air,and soil pollution due to unscientific disposal of high-quantity fly ash produced yearly.If we can put this ash to good use,it may assist us in mitigating the pollution caused by it.Although there are many conventional uses of fly ash,such as a pozzolanic material in the cement industry,more pathways need to be discovered to balance the high generation quantities with consumption.Therefore,a detailed description of its use in potential geoliner applications is presented in this article.A geoliner or a landfill liner acts as a virtually impenetrable layer to mitigate the leachate penetration into the underneath subsoil and groundwater,thus preventing contamination.There are presently some studies that support the use of only fly ash in such applications.Nevertheless,the properties of the geoliners using it are not so good to significantly mitigate environmental degradation owing to its high permeability and low densification tendency.The bentonite conventionally used has limited deposits and is mined intensively for its use as a natural sealant.Their depos-its must also be conserved,and an alternative material that may serve similar application benefits,like bentonite,must be selected.The desired aim can be fulfilled if we blend this combustion residue with other suitable materials(such as kaolinite clay)with low permeability.Thus,the article focuses on the possibilities of blending fly ash with different clays for geoliner construction to improve the individual properties of fly ash.This will contrib展开更多
Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelo...Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelopes.This work investigated the influence of the materials’hygric properties on the hygrothermal perfor-mance of a typical ITICS in different climate conditions in China.Two base wall materials,the traditional concrete and a new type aerated concrete,were tested and compared for their hygric properties firstly.The influence of the hygroscopicity of exterior plasters,the permeability of insulation materials and the climate conditions were then analyzed with WUFI simulations.The hygrothermal performance was evaluated with consideration of the total water content(TWC)of the walls and the moisture flux strength,the relative humidity(RH)and the mould growth risk at the interface between the base wall and the insulation layer(B-I interface).The numerical analysis implies that the TWC of internal insulated walls depends mainly on the hygroscopicity of exterior plaster and the wind-driven rain intensity.The upper limits for the water absorption coefficient of exterior plasters used in Bei-jing,Shanghai and Fuzhou are 1e-9,1e-10,1e-10 m^(2)/s respectively.When such limits are guaranteed,a vapour tight system created by using insulation materials with a large vapour resistance factor or adding a vapour barrier can improve the hygrothermal performance of ITICS,especially for concrete walls in cold climate.展开更多
This paper focuses on the disturbance suppression issue of hidden semi-Markov jump systems leveraging composite control.The system consists of a semi-Markov layer and an observed mode sequence layer,and it is subject ...This paper focuses on the disturbance suppression issue of hidden semi-Markov jump systems leveraging composite control.The system consists of a semi-Markov layer and an observed mode sequence layer,and it is subject to a matched disturbance generated by an exogenous system and a mismatched disturbance that is norm bounded.The proposal is to design a composite controller based on a disturbance observer to counteract and attenuate the disturbances effectively.By constructing a special Lyapunov function comparison point,the exponential stability is analyzed with the stability criterion in the form of linear matrix inequality is established.Two simulation examples are provided to demonstrate the practical merits of the composite controller relative to the single H_(∞)control.展开更多
基金This work was supported by the University of Science and Technology Liaoning(Grant Nos.601009816-39 and 2017RC03)the Liaoning Province Education Department of China(Grant Nos.601009887-16 and LJKQZ2021126)+1 种基金the National Natural Science Foundation of China(Grant Nos.51672117 and 51672118)the Postdoctoral Foundation Project of Shenzhen Polytechnic(Grant No.6020330007K).
文摘The water soluble coal tar pitches(WS-CTPs)were successfully prepared and used to construct the MnO_(2)@C composite materials by a hydrothermal method.It is interestingly observed that the structures and morphologies of MnO_(2)@C materials can be controlled by controlling the dosages of WS-CTPs and KMnO4.Meanwhile,it is aware that MnO_(2)exists in the MnO_(2)@C materials in an amorphous state.Compared with MnO_(2),MnO_(2)@C materials output a remarkable improvement in electrochemical performance.For instance,MnO_(2)@C-0.3 shows the storage capacity at 965.7 mA h g^(−1)after 300 cycles at a current density of 0.1 A g^(−1).In addition,after 600 cycles at a current density of 1.0 A g^(−1),the storage capacity of MnO_(2)@C-0.3 still keeps 450.3 mA h g^(−1),indicating that MnO_(2)@C-0.3 owns tremendous cycle stability at a high current density.In view of the fact that the coal tar pitches possess great cost advantages,the strategy of using WS-CTPs as a carbon source to cover the metal oxides is a competitive way to expand the application of metal oxides in the fabrication of electrodes of LIBs.
基金This work was supported in part by the National Natural Science Foundation of China(61903258)Guangdong Basic and Applied Basic Research Foundation(2022A1515010234)+1 种基金the Project of Department of Education of Guangdong Province(2022KTSCX105)Qatar National Research Fund(NPRP12C-0814-190012).
文摘This paper studies the countermeasure design problems of distributed resilient time-varying formation-tracking control for multi-UAV systems with single-way communications against composite attacks,including denial-of-services(DoS)attacks,false-data injection attacks,camouflage attacks,and actuation attacks(AAs).Inspired by the concept of digital twin,a new two-layered protocol equipped with a safe and private twin layer(TL)is proposed,which decouples the above problems into the defense scheme against DoS attacks on the TL and the defense scheme against AAs on the cyber-physical layer.First,a topologyrepairing strategy against frequency-constrained DoS attacks is implemented via a Zeno-free event-triggered estimation scheme,which saves communication resources considerably.The upper bound of the reaction time needed to launch the repaired topology after the occurrence of DoS attacks is calculated.Second,a decentralized adaptive and chattering-relief controller against potentially unbounded AAs is designed.Moreover,this novel adaptive controller can achieve uniformly ultimately bounded convergence,whose error bound can be given explicitly.The practicability and validity of this new two-layered protocol are shown via a simulation example and a UAV swarm experiment equipped with both Ultra-WideBand and WiFi communication channels.
文摘Electricity generated through coal-based Thermal Power Plants(TPPs)has played a pivotal role in shaping modern civiliza-tion,revolutionizing industries,and improving the quality of life for billions of people worldwide.These TPPs contribute to about 37%-40%of the global energy requirements.Energy production,in turn,has a direct impact on the economy of any country.Apart from this boon to humankind,these TPPs combusting coal as their primary fuel also have specific environmen-tal impacts,the major ones being water,air,and soil pollution due to unscientific disposal of high-quantity fly ash produced yearly.If we can put this ash to good use,it may assist us in mitigating the pollution caused by it.Although there are many conventional uses of fly ash,such as a pozzolanic material in the cement industry,more pathways need to be discovered to balance the high generation quantities with consumption.Therefore,a detailed description of its use in potential geoliner applications is presented in this article.A geoliner or a landfill liner acts as a virtually impenetrable layer to mitigate the leachate penetration into the underneath subsoil and groundwater,thus preventing contamination.There are presently some studies that support the use of only fly ash in such applications.Nevertheless,the properties of the geoliners using it are not so good to significantly mitigate environmental degradation owing to its high permeability and low densification tendency.The bentonite conventionally used has limited deposits and is mined intensively for its use as a natural sealant.Their depos-its must also be conserved,and an alternative material that may serve similar application benefits,like bentonite,must be selected.The desired aim can be fulfilled if we blend this combustion residue with other suitable materials(such as kaolinite clay)with low permeability.Thus,the article focuses on the possibilities of blending fly ash with different clays for geoliner construction to improve the individual properties of fly ash.This will contrib
基金This research was funded by National Key R&D Program of China(2017YFC0702800),which is gratefully acknowledged.
文摘Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelopes.This work investigated the influence of the materials’hygric properties on the hygrothermal perfor-mance of a typical ITICS in different climate conditions in China.Two base wall materials,the traditional concrete and a new type aerated concrete,were tested and compared for their hygric properties firstly.The influence of the hygroscopicity of exterior plasters,the permeability of insulation materials and the climate conditions were then analyzed with WUFI simulations.The hygrothermal performance was evaluated with consideration of the total water content(TWC)of the walls and the moisture flux strength,the relative humidity(RH)and the mould growth risk at the interface between the base wall and the insulation layer(B-I interface).The numerical analysis implies that the TWC of internal insulated walls depends mainly on the hygroscopicity of exterior plaster and the wind-driven rain intensity.The upper limits for the water absorption coefficient of exterior plasters used in Bei-jing,Shanghai and Fuzhou are 1e-9,1e-10,1e-10 m^(2)/s respectively.When such limits are guaranteed,a vapour tight system created by using insulation materials with a large vapour resistance factor or adding a vapour barrier can improve the hygrothermal performance of ITICS,especially for concrete walls in cold climate.
基金supported by the National Natural Science Foundation of China under Grants Nos.62173034,61925303,and 62088101。
文摘This paper focuses on the disturbance suppression issue of hidden semi-Markov jump systems leveraging composite control.The system consists of a semi-Markov layer and an observed mode sequence layer,and it is subject to a matched disturbance generated by an exogenous system and a mismatched disturbance that is norm bounded.The proposal is to design a composite controller based on a disturbance observer to counteract and attenuate the disturbances effectively.By constructing a special Lyapunov function comparison point,the exponential stability is analyzed with the stability criterion in the form of linear matrix inequality is established.Two simulation examples are provided to demonstrate the practical merits of the composite controller relative to the single H_(∞)control.