Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The ...Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The addition of BMImTFSI results in an increase of the ionic conductivity. At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio), the ionic conductivity reaches 4.27 × 10^-3 S/cm at 30 ℃. These composite polymer electrolytes exhibit good thermal and electrochemical stability, which are high enough to be applied in lithium batteries.展开更多
Secondary lithium-sulfur batteries have attracted extensive attention due to their high energy density,low cost and environment friendly.However,the"shuttle effect"of polysulfides dissolved in liquid electro...Secondary lithium-sulfur batteries have attracted extensive attention due to their high energy density,low cost and environment friendly.However,the"shuttle effect"of polysulfides dissolved in liquid electrolytes leads to a decrease of the cell Coulomb efficiency(CE).Therefore,researchers have used solid electrolytes instead of traditional liquid electrolytes and separators to suppress the"shuttle effect"of polysulfides and the growth of lithium dendrites.The progress in electrolytes for solid-state lithium-sulfur batteries including solid-state polymer,inorganic,and composite electrolytes to solve the issues is summarized.展开更多
Effects of nano-ceramic filler titanium oxide(TiO2) have been investigated on the ionic conductance of polymeric complexes consisting of polyvinyl chloride)(PVC)/poly(ethyl methacrylate)(PEMA),and lithium per...Effects of nano-ceramic filler titanium oxide(TiO2) have been investigated on the ionic conductance of polymeric complexes consisting of polyvinyl chloride)(PVC)/poly(ethyl methacrylate)(PEMA),and lithium perchlorate(LiClO4).The composite polymer blend electrolytes were prepared by solvent casting technique.The TiO2 nanofillers were homogeneously dispersed in the polymer electrolyte matrix and exhibited excellent interconnection with PVC/PEMA/PC/UCIO4 polymer electrolyte.The addition of TiO2nanofillers improved the ionic conductivity of the polymer electrolyte to some extent when the content of TiO2 is 15 wt%.The addition of TiO2 also enhanced the thermal stability of the electrolyte.The changes in the structural and complex formation properties of the materials are studied by X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FTIR) techniques.The scanning electron microscope image of nano-composite polymer electrolyte membrane confirms that the TiO2 nanoparticles were distributed uniformly in the polymer matrix.展开更多
1 Results Poly(ether urethane) was composed of incompatible hardware and software.It had better mechanical properties at room temperature,good flexibility,and lower glass transition temperature[1].It was increased the...1 Results Poly(ether urethane) was composed of incompatible hardware and software.It had better mechanical properties at room temperature,good flexibility,and lower glass transition temperature[1].It was increased the transmission of charged ions that polyether soft segment occurred solvent role with the alkali metal salts[2].However,conductivity of room temperature was low,and the study was very few to inorganic oxide particles compositing poly(ether urethane).This indicates the importance of solid pol...展开更多
基金financially supported by the National 863 Program(No.2007AA03Z226)the National Key Program for Basic Research of China(No.2002CB211800 and 2009CB220100).
文摘Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The addition of BMImTFSI results in an increase of the ionic conductivity. At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio), the ionic conductivity reaches 4.27 × 10^-3 S/cm at 30 ℃. These composite polymer electrolytes exhibit good thermal and electrochemical stability, which are high enough to be applied in lithium batteries.
基金financially supported by the National Natural Science Foundation of China (Nos.21333007, U1705255,21373137)New Century Excellent Talents in University(No.NCET-13-0371)
文摘Secondary lithium-sulfur batteries have attracted extensive attention due to their high energy density,low cost and environment friendly.However,the"shuttle effect"of polysulfides dissolved in liquid electrolytes leads to a decrease of the cell Coulomb efficiency(CE).Therefore,researchers have used solid electrolytes instead of traditional liquid electrolytes and separators to suppress the"shuttle effect"of polysulfides and the growth of lithium dendrites.The progress in electrolytes for solid-state lithium-sulfur batteries including solid-state polymer,inorganic,and composite electrolytes to solve the issues is summarized.
基金the UGC,New Delhi,India for providing financial support to carry out this work
文摘Effects of nano-ceramic filler titanium oxide(TiO2) have been investigated on the ionic conductance of polymeric complexes consisting of polyvinyl chloride)(PVC)/poly(ethyl methacrylate)(PEMA),and lithium perchlorate(LiClO4).The composite polymer blend electrolytes were prepared by solvent casting technique.The TiO2 nanofillers were homogeneously dispersed in the polymer electrolyte matrix and exhibited excellent interconnection with PVC/PEMA/PC/UCIO4 polymer electrolyte.The addition of TiO2nanofillers improved the ionic conductivity of the polymer electrolyte to some extent when the content of TiO2 is 15 wt%.The addition of TiO2 also enhanced the thermal stability of the electrolyte.The changes in the structural and complex formation properties of the materials are studied by X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FTIR) techniques.The scanning electron microscope image of nano-composite polymer electrolyte membrane confirms that the TiO2 nanoparticles were distributed uniformly in the polymer matrix.
文摘1 Results Poly(ether urethane) was composed of incompatible hardware and software.It had better mechanical properties at room temperature,good flexibility,and lower glass transition temperature[1].It was increased the transmission of charged ions that polyether soft segment occurred solvent role with the alkali metal salts[2].However,conductivity of room temperature was low,and the study was very few to inorganic oxide particles compositing poly(ether urethane).This indicates the importance of solid pol...