In order to evaluate the effects of the retarder on the braking stability quantitatively, an adhesion coefficient model is built for the composite braking produced by the retarder and the service braking system. The s...In order to evaluate the effects of the retarder on the braking stability quantitatively, an adhesion coefficient model is built for the composite braking produced by the retarder and the service braking system. The stability of composite braking is evaluated by using the model and the standard ECE R13. The evaluation results show that the composite braking stability decreases gradually with the increase of the retarder's braking force. To improve the stability, the braking force distribution of the service braking system is adjusted according to the position relationship among the braking force distribution line of the service braking system, the generalized braking force distribution line and the generalized I curve, and the constraints in ECE R13. The simulation results show that the composite braking stability can be improved significantly.展开更多
文摘In order to evaluate the effects of the retarder on the braking stability quantitatively, an adhesion coefficient model is built for the composite braking produced by the retarder and the service braking system. The stability of composite braking is evaluated by using the model and the standard ECE R13. The evaluation results show that the composite braking stability decreases gradually with the increase of the retarder's braking force. To improve the stability, the braking force distribution of the service braking system is adjusted according to the position relationship among the braking force distribution line of the service braking system, the generalized braking force distribution line and the generalized I curve, and the constraints in ECE R13. The simulation results show that the composite braking stability can be improved significantly.