The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and p...The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and pressureless firing. The results indicate that sample B3 (designed mullite content 15 wt%) fired at 1 400 ℃ exhibited optimal performance with a bending strength of 97.41 MPa. Sample B3 can withstand 30-cycles thermal shock without cracking (wind cooling from 1 100 ℃ to room temperature), and the bending strength after thermal shock decreased by 17.92%. When the service temperature is 600℃, the thermal diffusivity, specific heat capacity, thermal conductivity and heat capacity are 6.48× 10-2 cm:.s-1, 0.69 kJ·kg-1. K-1, 9.62 W·m-1·K-1 and 977.76 kJ·kg-1, respectively. The XRD and SEM results show that SiC, mullite, or-quartz, and tridymite are connected closely, which gives the material a good bending strength. After 30-time thermal shock cycles, the structure of samples becomes loose. SiC grains are intersectingly arranged with rodshape mullite, exhibiting a favorable thermal shock resistance. The addition of Al(OH)3 and Suzhou kaolin can accelerate the synthesis of mullite, thus to reduce the firing temperature effectively. The volume effect of tfidymite is relatively small, improving the thermal shock resistance of materials. A higher designed muUite content yields a lower loss rate of bending strength. The mullite content should not be more than 15 wt% or else the bending strength would be diminished.展开更多
Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. A...Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. As a type of renewable natural plant fiber, kapok fiber is abundant,biocompatible and biodegradable, and its full exploration and potential application have received increasing attention in both academic and industrial fields. Based on the structure and properties of kapok fiber, this review provides a summary of recent research on kapok fiber including chemical and physical treatments, kapok fiber-based composite materials, and the application of kapok fiber as an absorbent material for oils, metal ions, dyes, and sound,with special attention to its use as an oil-absorbing material, one predominant application of kapok fiber in the coming future.展开更多
Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies...Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies have shown that in the super high frequency (SHF) and extremely high frequency (EHF) ranges on the basis of two-layer structures with different content of carbonyl iron particles can create a radar absorbing coatings with a reflectivity of less than -10 dB over a wide bandwidth from 3.1 to 17.1 GHz and from 27 to 37 GHz. Absorbing properties of composites are saved in terahertz frequency range from 250 to 525 GHz.展开更多
基金Funded by the National Basic Research Program(973 Program)(No.2010CB227105)
文摘The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and pressureless firing. The results indicate that sample B3 (designed mullite content 15 wt%) fired at 1 400 ℃ exhibited optimal performance with a bending strength of 97.41 MPa. Sample B3 can withstand 30-cycles thermal shock without cracking (wind cooling from 1 100 ℃ to room temperature), and the bending strength after thermal shock decreased by 17.92%. When the service temperature is 600℃, the thermal diffusivity, specific heat capacity, thermal conductivity and heat capacity are 6.48× 10-2 cm:.s-1, 0.69 kJ·kg-1. K-1, 9.62 W·m-1·K-1 and 977.76 kJ·kg-1, respectively. The XRD and SEM results show that SiC, mullite, or-quartz, and tridymite are connected closely, which gives the material a good bending strength. After 30-time thermal shock cycles, the structure of samples becomes loose. SiC grains are intersectingly arranged with rodshape mullite, exhibiting a favorable thermal shock resistance. The addition of Al(OH)3 and Suzhou kaolin can accelerate the synthesis of mullite, thus to reduce the firing temperature effectively. The volume effect of tfidymite is relatively small, improving the thermal shock resistance of materials. A higher designed muUite content yields a lower loss rate of bending strength. The mullite content should not be more than 15 wt% or else the bending strength would be diminished.
基金supported by the National Natural Science Foundation of China (Nos. 21107116, 21477135)
文摘Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. As a type of renewable natural plant fiber, kapok fiber is abundant,biocompatible and biodegradable, and its full exploration and potential application have received increasing attention in both academic and industrial fields. Based on the structure and properties of kapok fiber, this review provides a summary of recent research on kapok fiber including chemical and physical treatments, kapok fiber-based composite materials, and the application of kapok fiber as an absorbent material for oils, metal ions, dyes, and sound,with special attention to its use as an oil-absorbing material, one predominant application of kapok fiber in the coming future.
文摘Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies have shown that in the super high frequency (SHF) and extremely high frequency (EHF) ranges on the basis of two-layer structures with different content of carbonyl iron particles can create a radar absorbing coatings with a reflectivity of less than -10 dB over a wide bandwidth from 3.1 to 17.1 GHz and from 27 to 37 GHz. Absorbing properties of composites are saved in terahertz frequency range from 250 to 525 GHz.