Using multidiscipline methodologies, the differences in preservation and enrichment mechanisms of organic matter (OM) in muddy sediment and mudstone are investigated. In clay fractions, concentrations of TOC and chlor...Using multidiscipline methodologies, the differences in preservation and enrichment mechanisms of organic matter (OM) in muddy sediment and mudstone are investigated. In clay fractions, concentrations of TOC and chloroform bitumen “A” are significantly higher than those in coarser fractions. This indicates that clay minerals (CM) play an important role in enriching OM. The content of chloroform bitumen “A” increases obviously in the clay fraction, which reveals that dissolvable OM is the main composition of coalesce with clay minerals. Furthermore, TG and DTA data show that OM enrichment mechanisms and preservation forms have multiplicity. Several exothermic peaks in the DTA curves demonstrate that muddy sediment and mudstone contain a number of bioclasts and amorphous OM besides dissolvable OM. Through analyzing with XRD and DTA after mudstone samples were pretreated, the conclusions can be arrived at. Firstly, CM interlayer space of XRD curves and exothermic peaks of DTA curves both change as temperature increases. Secondly, the changes of CM interlayer space and exothermic peaks are concordant and stable around 350°C. All these are the features that OM enters CM interlayers to form stable organo-clay complexes. Therefore, the combination format of OM with CM is not only surface adsorption, partial OM enters CM interlayers to form stable organo-clay complexes. Finally, through the research on OM preservation forms and enrichment mechanisms in muddy sediment and mudstone, the hydrocarbon-generation processes and the global carbon cycle and budget can be explained.展开更多
The similar floatabilities of calcium minerals and the huge difference between scheelite and wolframite have resulted in difficulties during their separation by flotation in Shizhuyuan Mine. In this study, novel colle...The similar floatabilities of calcium minerals and the huge difference between scheelite and wolframite have resulted in difficulties during their separation by flotation in Shizhuyuan Mine. In this study, novel collectors, lead complexes of benzohydroxamic acid(Pb-BHA),were introduced to modify the surface properties of scheelite and wolframite, thereby effectively and selectively improving floatability. The Pb-BHA complexes are found to be selective for the separation of scheelite and calcium minerals with little use of depressants and enable the synchronous flotation of scheelite and wolframite.Hence, a novel flotation process was developed for the recovery of tungsten minerals. The process is simplified greatly, and the recovery is improved by almost 10%.Removing or decreasing the amount of water glass contributes to the improvement of tungsten and fluorite recovery and the circulation of water and reagents, which benefits the environment.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 40672085)China Petroleum and Chemical Corporation Project
文摘Using multidiscipline methodologies, the differences in preservation and enrichment mechanisms of organic matter (OM) in muddy sediment and mudstone are investigated. In clay fractions, concentrations of TOC and chloroform bitumen “A” are significantly higher than those in coarser fractions. This indicates that clay minerals (CM) play an important role in enriching OM. The content of chloroform bitumen “A” increases obviously in the clay fraction, which reveals that dissolvable OM is the main composition of coalesce with clay minerals. Furthermore, TG and DTA data show that OM enrichment mechanisms and preservation forms have multiplicity. Several exothermic peaks in the DTA curves demonstrate that muddy sediment and mudstone contain a number of bioclasts and amorphous OM besides dissolvable OM. Through analyzing with XRD and DTA after mudstone samples were pretreated, the conclusions can be arrived at. Firstly, CM interlayer space of XRD curves and exothermic peaks of DTA curves both change as temperature increases. Secondly, the changes of CM interlayer space and exothermic peaks are concordant and stable around 350°C. All these are the features that OM enters CM interlayers to form stable organo-clay complexes. Therefore, the combination format of OM with CM is not only surface adsorption, partial OM enters CM interlayers to form stable organo-clay complexes. Finally, through the research on OM preservation forms and enrichment mechanisms in muddy sediment and mudstone, the hydrocarbon-generation processes and the global carbon cycle and budget can be explained.
基金financially supported by the National Natural Science Foundation of China (No.51634009)the Institutions of Higher Learning Discipline Innovation Conference Program (111 Project) (No.B14034)the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources Innovation Driven Plan of Central South University (No.2015CX005)
文摘The similar floatabilities of calcium minerals and the huge difference between scheelite and wolframite have resulted in difficulties during their separation by flotation in Shizhuyuan Mine. In this study, novel collectors, lead complexes of benzohydroxamic acid(Pb-BHA),were introduced to modify the surface properties of scheelite and wolframite, thereby effectively and selectively improving floatability. The Pb-BHA complexes are found to be selective for the separation of scheelite and calcium minerals with little use of depressants and enable the synchronous flotation of scheelite and wolframite.Hence, a novel flotation process was developed for the recovery of tungsten minerals. The process is simplified greatly, and the recovery is improved by almost 10%.Removing or decreasing the amount of water glass contributes to the improvement of tungsten and fluorite recovery and the circulation of water and reagents, which benefits the environment.