期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
(α,β)混合序列加权和的完全收敛性
1
作者 余超群 《湖北大学学报(自然科学版)》 CAS 2017年第2期123-130,共8页
借助(α,β)混合序列加权和的极大值矩不等式,采用截尾的方法讨论(α,β)混合序列加权和的完全收敛性,并获得(α,β)混合序列加权和的Marcinkiewicz-Zygmund型强大数定律.
关键词 β)混合序列 Marcinkiewicz-Zygmund型强大数定律 完全收敛性 加权和
下载PDF
混合序列的大数定律和完全收敛性 被引量:3
2
作者 黄振华 《数学杂志》 CSCD 北大核心 2010年第5期853-858,共6页
本文研究了混合序列的大数定律和完全收敛性.利用Bryc W.和Smolenski W.不等式,获得了与独立情形一样的大数定律和完全收敛定理.
关键词 ρ^-混合序列 大数定律 完全收敛性
下载PDF
CONTACT PROCESS ON HEXAGONAL LATTICE
3
作者 姚强 李群昌 《Acta Mathematica Scientia》 SCIE CSCD 2010年第3期769-790,共22页
In this article, we discuss several properties of the basic contact process on hexagonal lattice H, showing that it behaves quite similar to the process on d-dimensional lattice Zd in many aspects. Firstly, we constru... In this article, we discuss several properties of the basic contact process on hexagonal lattice H, showing that it behaves quite similar to the process on d-dimensional lattice Zd in many aspects. Firstly, we construct a coupling between the contact process on hexagonal lattice and the oriented percolation, and prove an equivalent finite space-time condition for the survival of the process. Secondly, we show the complete convergence theorem and the polynomial growth hold for the contact process on hexagonal lattice. Finally, we prove exponential bounds in the supercritical case and exponential decay rates in the subcritical case of the process. 展开更多
关键词 Hexagonal lattice contact process critical value complete convergence theorem rate of growth
下载PDF
某些乘积图上接触过程的完全收敛定理的证明
4
作者 姚强 《数学物理学报(A辑)》 CSCD 北大核心 2010年第1期97-102,共6页
该文证明了当传染参数充分大时,乘积图G_1×G_2×Z上的接触过程满足完全收敛定理,其中G_1和G_2是任意无穷、局部有限的可迁图(从而度有界).该结果在一定程度上推广了文献[1]的结果.
关键词 接触过程 完全收敛定理.
下载PDF
On the Relationship Between the Baum-Katz-Spitzer Complete Convergence Theorem and the Law of the Iterated Logarithm
5
作者 De Li LI Andrew ROSALSKY Andrei VOLODIN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第4期599-612,共14页
For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of ... For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which (i) lim sup n→∞ ||Sn||/an〈∞ a.s.and ∞ ∑n=1(1/n)P(||Sn||/an ≥ε〈∞for all ε 〉 λ for some constant λ ∈ [0, ∞) are equivalent;(ii) For all constants λ ∈ [0, ∞),lim sup ||Sn||/an =λ a.s.and ^∞∑ n=1(1/n) P(||Sn||/an ≥ε){〈∞, if ε〉λ =∞,if ε〈λare equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables. 展开更多
关键词 partial sums of i.i.d. Banach space-valued random variables Baum-Katz-Spitzer complete convergence theorem law of the iterated logarithm almost sure convergence
原文传递
A Supplement to the Baum-Katz-Spitzer Complete Convergence Theorem
6
作者 Andrew ROSALSKY 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第3期557-562,共6页
Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i... Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut. 展开更多
关键词 partial sums of i.i.d. Banach space valued random variables Baum-Katz-Spitzer complete convergence theorem almost sure convergence
原文传递
Vitali-Hahn-Sakes-Nikodym收敛定理的一个推广
7
作者 沈丹桂 《嘉兴学院学报》 2011年第6期12-15,共4页
证明了有效代数上的一个子级数收敛定理,把Vitali-Hahn-Sakes-Nikodym收敛定理从σ-代数推广到有效代数上,同时得到另一个测度收敛定理.
关键词 Vitali—Hahn—Sakes--Nikodym收敛定理 准-σ-完备有效代数 局部凸空间 子级数收敛 测度收敛定理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部