地磁环境下弱磁信号的检测要求地磁传感器具有灵敏度高、工作范围宽的特点,非晶丝在高频交流激励下具有阻抗变化率高的特点,宜于用来作地磁传感器。但非晶丝线性工作区较短,不能完全覆盖地磁场范围,通过采用数字补偿技术可以补偿大部分...地磁环境下弱磁信号的检测要求地磁传感器具有灵敏度高、工作范围宽的特点,非晶丝在高频交流激励下具有阻抗变化率高的特点,宜于用来作地磁传感器。但非晶丝线性工作区较短,不能完全覆盖地磁场范围,通过采用数字补偿技术可以补偿大部分地磁场,使传感器工作于非晶丝的线性区,提高了传感器的灵敏度,扩展了传感器的工作范围。通过测试,采用数字补偿技术的巨磁阻传感器灵敏度为71.133μV/n T,工作于-61 750.8~73 774.8 n T,与被测磁场的最大误差为2.45 n T。展开更多
A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and inte...A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and internal clock to simplify brightness control By embedding a 5-bit digital analog converter (DAC) into the driver, wide dimming range is achieved. Moreover, a new dynamic slope compensation circuit is presented and other key circuits of the driver are optimized to get higher efficiency and fast transition response. A practical circuit is implemented with 0.6 um bipolar complementary-metal-oxide-semiconductor double-diffused-metal-oxide-semiconductor (BCD) technology. The simulation results show that the driver can provide both wide output current from 1.3 mA to 42 mA with 32-level digital dimming and higher efficiency up to 83% while it works at 1 MHz switching frequency with the input voltage variation from 2.7 V to 5.5 V.展开更多
文摘地磁环境下弱磁信号的检测要求地磁传感器具有灵敏度高、工作范围宽的特点,非晶丝在高频交流激励下具有阻抗变化率高的特点,宜于用来作地磁传感器。但非晶丝线性工作区较短,不能完全覆盖地磁场范围,通过采用数字补偿技术可以补偿大部分地磁场,使传感器工作于非晶丝的线性区,提高了传感器的灵敏度,扩展了传感器的工作范围。通过测试,采用数字补偿技术的巨磁阻传感器灵敏度为71.133μV/n T,工作于-61 750.8~73 774.8 n T,与被测磁场的最大误差为2.45 n T。
基金supported by the National Natural Science Foundation of China (60776027).
文摘A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and internal clock to simplify brightness control By embedding a 5-bit digital analog converter (DAC) into the driver, wide dimming range is achieved. Moreover, a new dynamic slope compensation circuit is presented and other key circuits of the driver are optimized to get higher efficiency and fast transition response. A practical circuit is implemented with 0.6 um bipolar complementary-metal-oxide-semiconductor double-diffused-metal-oxide-semiconductor (BCD) technology. The simulation results show that the driver can provide both wide output current from 1.3 mA to 42 mA with 32-level digital dimming and higher efficiency up to 83% while it works at 1 MHz switching frequency with the input voltage variation from 2.7 V to 5.5 V.