针对变电站在谐波治理的同时需要具备一定的无功静补能力的特点和要求,在分析传统谐波治理方法特点和不足的基础上,提出一种新型拓扑结构——谐振阻抗型混合有源滤波器(resonant impedance type hybrid active power filter,RITHAF)。在...针对变电站在谐波治理的同时需要具备一定的无功静补能力的特点和要求,在分析传统谐波治理方法特点和不足的基础上,提出一种新型拓扑结构——谐振阻抗型混合有源滤波器(resonant impedance type hybrid active power filter,RITHAF)。在对RITHAF基本工作原理进行分析的基础上,深入研究其控制为电压源和电流源的不同策略,指出将RITHAF控制为电流源时具有更加优良的性能。为对RITHAF性能进行分析,定义谐波源谐波抑制函数和电网谐波抑制函数,并以此为指标研究电网阻抗变化、无源滤波器失谐对RITHAF补偿特性的影响。仿真及实验结果表明,RITHAF具有良好的谐波治理和无功补偿能力,适用于中高压系统的应用。展开更多
随着风电并网容量的快速增长,风机脱网已成为电网安全运行的重要威胁,故障清除后恢复过程中出现的高电压则是引发风机脱网的重要因素之一。针对风电场广泛应用的静止无功补偿器(static var compensator,SVC),详细解析了其电压无功暂态...随着风电并网容量的快速增长,风机脱网已成为电网安全运行的重要威胁,故障清除后恢复过程中出现的高电压则是引发风机脱网的重要因素之一。针对风电场广泛应用的静止无功补偿器(static var compensator,SVC),详细解析了其电压无功暂态响应轨迹的特征,揭示了SVC所具有的"错位补偿"效应及其引发风机高电压脱网的原理,并分析了电压扰动速率、SVC控制参数和触发延迟时间对"错位补偿"效应的影响。在此基础上,提出了SVC变参数控制策略和紧急闭锁控制策略。实际风电场的仿真结果验证了控制策略缓解风机高电压脱网的有效性。展开更多
文摘针对变电站在谐波治理的同时需要具备一定的无功静补能力的特点和要求,在分析传统谐波治理方法特点和不足的基础上,提出一种新型拓扑结构——谐振阻抗型混合有源滤波器(resonant impedance type hybrid active power filter,RITHAF)。在对RITHAF基本工作原理进行分析的基础上,深入研究其控制为电压源和电流源的不同策略,指出将RITHAF控制为电流源时具有更加优良的性能。为对RITHAF性能进行分析,定义谐波源谐波抑制函数和电网谐波抑制函数,并以此为指标研究电网阻抗变化、无源滤波器失谐对RITHAF补偿特性的影响。仿真及实验结果表明,RITHAF具有良好的谐波治理和无功补偿能力,适用于中高压系统的应用。
文摘随着风电并网容量的快速增长,风机脱网已成为电网安全运行的重要威胁,故障清除后恢复过程中出现的高电压则是引发风机脱网的重要因素之一。针对风电场广泛应用的静止无功补偿器(static var compensator,SVC),详细解析了其电压无功暂态响应轨迹的特征,揭示了SVC所具有的"错位补偿"效应及其引发风机高电压脱网的原理,并分析了电压扰动速率、SVC控制参数和触发延迟时间对"错位补偿"效应的影响。在此基础上,提出了SVC变参数控制策略和紧急闭锁控制策略。实际风电场的仿真结果验证了控制策略缓解风机高电压脱网的有效性。