MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和...MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和EVI时间谱数据进行了重构,从而进行了河西走廊绿洲中东部样区一系列耕地信息的提取实验,包括耕地、休耕地识别以及耕地复种指数、作物种类提取。在此基础上,对MODIS的NDVI与EVI数据的应用进行了对比分析。结果显示:(1)利用傅立叶谐波变换得到的EVI和NDVI时间谱曲线的谐波余项及谐波振幅对耕地进行识别,从识别精度来看,EVI要优于NDVI,识别精度分别为97.17%和95.99%,Kappa系数分别达到0.7938和0.6518;(2)通过计算时间序列曲线的波峰数能够提取耕地的复种指数,并且在EVI和NDVI曲线波峰阈值分别设为0.20和0.25时,休耕地能较为准确地被识别出来;(3)通过提取作物生长期内曲线的VI最大增长速率时间点以及峰值时间点等信息,作物种类能被初步识别,并且EVI较NDVI具有更强的识别能力。展开更多
机器学习模型广泛应用于区域性滑坡易发性分析。模型的选择关系到评价结果的可信度、准确率和稳定性。现有滑坡易发性分析模型对比研究侧重模型的预测精度。模型的稳定性和数据量敏感性对机器学习模型的性能评估同样非常重要。本文以福...机器学习模型广泛应用于区域性滑坡易发性分析。模型的选择关系到评价结果的可信度、准确率和稳定性。现有滑坡易发性分析模型对比研究侧重模型的预测精度。模型的稳定性和数据量敏感性对机器学习模型的性能评估同样非常重要。本文以福建省南平市蔡源流域为研究区,以四川省绵阳市北川县为验证区,从预测精度、稳定性和数据量敏感性3个方面深入对比BP(Back Propagation)人工神经网络模型和CART(Classification and Regression Tree)决策树模型在滑坡易发性分析中的效果,主要结论如下:①在逐渐增加一定数量训练样本的过程中,BP人工神经网络模型预测精度的增长率更高。在蔡源流域内,当训练样本数量增加10000时,BP人工神经网络模型的预测精度上升5.22%,CART决策树模型的预测精度上升2.11%。②BP人工神经网络的预测精度高于CART决策树模型,且较为稳定。在100组数据集上,BP人工神经网络模型验证集预测精度的均值和验证集滑坡样本预测精度的均值分别为81.60%和84.86%,高于CART决策树模型的72.97%和76.59%。与此同时,BP人工神经网络模型对应预测精度的标准差分别是0.32%和0.37%,小于CART决策树模型的0.35%和0.67%。③BP人工神经网络模型分析的滑坡易发区相比CART决策树模型,更接近实际滑坡的空间分布。最后,北川县的验证实验也出现了相同的现象。展开更多
In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert ...In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM, by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.展开更多
文摘MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和EVI时间谱数据进行了重构,从而进行了河西走廊绿洲中东部样区一系列耕地信息的提取实验,包括耕地、休耕地识别以及耕地复种指数、作物种类提取。在此基础上,对MODIS的NDVI与EVI数据的应用进行了对比分析。结果显示:(1)利用傅立叶谐波变换得到的EVI和NDVI时间谱曲线的谐波余项及谐波振幅对耕地进行识别,从识别精度来看,EVI要优于NDVI,识别精度分别为97.17%和95.99%,Kappa系数分别达到0.7938和0.6518;(2)通过计算时间序列曲线的波峰数能够提取耕地的复种指数,并且在EVI和NDVI曲线波峰阈值分别设为0.20和0.25时,休耕地能较为准确地被识别出来;(3)通过提取作物生长期内曲线的VI最大增长速率时间点以及峰值时间点等信息,作物种类能被初步识别,并且EVI较NDVI具有更强的识别能力。
文摘机器学习模型广泛应用于区域性滑坡易发性分析。模型的选择关系到评价结果的可信度、准确率和稳定性。现有滑坡易发性分析模型对比研究侧重模型的预测精度。模型的稳定性和数据量敏感性对机器学习模型的性能评估同样非常重要。本文以福建省南平市蔡源流域为研究区,以四川省绵阳市北川县为验证区,从预测精度、稳定性和数据量敏感性3个方面深入对比BP(Back Propagation)人工神经网络模型和CART(Classification and Regression Tree)决策树模型在滑坡易发性分析中的效果,主要结论如下:①在逐渐增加一定数量训练样本的过程中,BP人工神经网络模型预测精度的增长率更高。在蔡源流域内,当训练样本数量增加10000时,BP人工神经网络模型的预测精度上升5.22%,CART决策树模型的预测精度上升2.11%。②BP人工神经网络的预测精度高于CART决策树模型,且较为稳定。在100组数据集上,BP人工神经网络模型验证集预测精度的均值和验证集滑坡样本预测精度的均值分别为81.60%和84.86%,高于CART决策树模型的72.97%和76.59%。与此同时,BP人工神经网络模型对应预测精度的标准差分别是0.32%和0.37%,小于CART决策树模型的0.35%和0.67%。③BP人工神经网络模型分析的滑坡易发区相比CART决策树模型,更接近实际滑坡的空间分布。最后,北川县的验证实验也出现了相同的现象。
文摘In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM, by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.