Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor...Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor product form two dimension wavelet finite element was used to solve the deflection problem of elastic thin plate. The error order was researched. A numerical example was given at last.展开更多
Let I be the 2 × 2 identity matrix, and M a 2 × 2 dilation matrix with M2 = 2I. First, we present the correlation of the scaling functions with dilation matrix M and 2I. Then by relating the properties of sc...Let I be the 2 × 2 identity matrix, and M a 2 × 2 dilation matrix with M2 = 2I. First, we present the correlation of the scaling functions with dilation matrix M and 2I. Then by relating the properties of scaling functions with dilation matrix 2I to the properties of scaling functions with dilation matrix M, we give a parameterization of a class of bivariate nonseparable orthogonal symmetric compactly supported scaling functions with dilation matrix M. Finally, a construction example of nonseparable orthogonal symmetric and compactly supported scaling functions is given.展开更多
文摘Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor product form two dimension wavelet finite element was used to solve the deflection problem of elastic thin plate. The error order was researched. A numerical example was given at last.
基金Supported by the Natural Science Foundation of Guangdong Province (Grant Nos. 06105648 05008289+1 种基金 032038)the Doctoral Foundation of Guangdong Province (Grant No.04300917)
文摘Let I be the 2 × 2 identity matrix, and M a 2 × 2 dilation matrix with M2 = 2I. First, we present the correlation of the scaling functions with dilation matrix M and 2I. Then by relating the properties of scaling functions with dilation matrix 2I to the properties of scaling functions with dilation matrix M, we give a parameterization of a class of bivariate nonseparable orthogonal symmetric compactly supported scaling functions with dilation matrix M. Finally, a construction example of nonseparable orthogonal symmetric and compactly supported scaling functions is given.