The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner M...The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability w展开更多
The cultivation of Panax plants is hindered by replanting problems, which may be caused by plantdriven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanti...The cultivation of Panax plants is hindered by replanting problems, which may be caused by plantdriven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased,whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas,Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely,Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota,increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities;these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem.展开更多
The FAIR principles have been widely cited,endorsed and adopted by a broad range of stakeholders since their publication in 2016.By intention,the 15 FAIR guiding principles do not dictate specific technological implem...The FAIR principles have been widely cited,endorsed and adopted by a broad range of stakeholders since their publication in 2016.By intention,the 15 FAIR guiding principles do not dictate specific technological implementations,but provide guidance for improving Findability,Accessibility,Interoperability and Reusability of digital resources.This has likely contributed to the broad adoption of the FAIR principles,because individual stakeholder communities can implement their own FAIR solutions.However,it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations.Thus,while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways,for true interoperability we need to support convergence in implementation choices that are widely accessible and(re)-usable.We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible,robust,widespread and consistent FAIR implementations.Any self-identified stakeholder community may either choose to reuse solutions from existing implementations,or when they spot a gap,accept the challenge to create the needed solution,which,ideally,can be used again by other communities in the future.Here,we provide interpretations and implementation considerations(choices and challenges)for each FAIR principle.展开更多
In natural environments,plants are exposed to diverse microbiota that they interact with in complex ways.While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants,many mi...In natural environments,plants are exposed to diverse microbiota that they interact with in complex ways.While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants,many microbes and microbial communities can have substantial beneficial effects on their plant host.Such beneficial effects include improved acquisition of nutrients,accelerated growth,resilience against pathogens,and improved resistance against abiotic stress conditions such as heat,drought,and salinity.However,the beneficial effects of bacterial strains or consortia on their host are often cultivar and species specific,posing an obstacle to their general application.Remarkably,many of the signals that trigger plant immune responses are molecularly highly similar and often identical in pathogenic and beneficial microbes.Thus,it is unclear what determines the outcome of a particular microbe-host interaction and which factors enable plants to distinguish beneficials from pathogens.To unravel the complex network of genetic,microbial,and metabolic interactions,including the signaling events mediating microbe-host interactions,comprehensive quantitative systems biology approaches will be needed.展开更多
Two surveys were conducted to investigate weed vegetation in a 153-hm^2 sampling area of summer crop fields from Anhui Province, China, through visual scoring of the level of weed infestation compared with summer crop...Two surveys were conducted to investigate weed vegetation in a 153-hm^2 sampling area of summer crop fields from Anhui Province, China, through visual scoring of the level of weed infestation compared with summer crops on a seven-class scale. In total, 155 sampling sites were selected in the field based on crops, tillage, rotation systems, geographical regions, and soil types across the province. Data on weed communities and environmental factors were collected and analyzed through principal component analysis (PCA) and canonical correspondence analysis (CCA), and the output was interpreted ecologically. Results showed that the main factors influencing the structure and distribution of weed communities in summer crop fields were the soil submersion period, latitude, and soil type and pH. The CCA indicated a significant relationship between weed dominance and soil submersion duration, latitude, and soil pH. From the result of the PCA and CCA ordination, the 155 sampling sites could be divided into three groups based on geographic and floristic composition, as well as weed abundance. The southern dry land group, which was characterized by a double-cropping system in the hilly regions of southern and central Anhui Province with a continuous summer crop and an autumn dry land crop, was dominated by Galium aparine Linn. var. tenerum (Gren. et Godr) Robb., Avenafatua L., and Veronica persica Poir. The northern dry land group, which had the same cropping system as the southern dry land group, was dominated by G. aparine var. tenerum, Galium tricorne Stokes, Descurainia sophia (L.) Schur., and Lithospermum arvense L. in the North Anhui Province, China. These two dry land groups could be combined into one large dry land group, in which the Galium weed vegetation type dominated. The third group was the paddy soil group, which was characterized by a continu- ous summer crop and double- or triple-cropping systems of rice, and prevailed in the south and central areas of Anhui Province; Alopecurus aequalis Sobo展开更多
文摘The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability w
基金supported by grants from the National Science Foundation of China(81603238)
文摘The cultivation of Panax plants is hindered by replanting problems, which may be caused by plantdriven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased,whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas,Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely,Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota,increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities;these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem.
基金The work of A.Jacobsen,C.Evelo,M.Thompson,R.Cornet,R.Kaliyaperuma and M.Roos is supported by funding from the European Union’s Horizon 2020 research and innovation program under the EJP RD COFUND-EJP N°825575.The work of A.Jacobsen,C.Evelo,C.Goble,M.Thompson,N.Juty,R.Hooft,M.Roos,S-A.Sansone,P.McQuilton,P.Rocca-Serra and D.Batista is supported by funding from ELIXIR EXCELERATE,H2020 grant agreement number 676559.R.Hooft was further funded by NL NWO NRGWI.obrug.2018.009.N.Juty and C.Goble were funded by CORBEL(H2020 grant agreement 654248)N.Juty,C.Goble,S-A.Sansone,P.McQuilton,P.Rocca-Serra and D.Batista were funded by FAIRplus(IMI grant agreement 802750)+12 种基金N.Juty,C.Goble,M.Thompson,M.Roos,S-A.Sansone,P.McQuilton,P.Rocca-Serra and D.Batista were funded by EOSClife H2020-EU(grant agreement number 824087)C.Goble was funded by DMMCore(BBSRC BB/M013189/)M.Thompson,M.Roos received funding from NWO(VWData 400.17.605)S-A.Sansone,P.McQuilton,P.Rocca-Serra and D.Batista have been funded by grants awarded to S-A.Sansone from the UK BBSRC and Research Councils(BB/L024101/1,BB/L005069/1)EU(H2020-EU 634107H2020-EU 654241,IMI(IMPRiND 116060)NIH Data Common Fund,and from the Wellcome Trust(ISA-InterMine 212930/Z/18/ZFAIRsharing 208381/A/17/Z)The work of A.Waagmeester has been funded by grant award number GM089820 from the National Institutes of Health.M.Kersloot was funded by the European Regional Development Fund(KVW-00163).The work of N.Meyers was funded by the National Science Foundation(OAC 1839030)The work of M.D.Wilkinson is funded by Isaac Peral/Marie Curie cofund with the Universidad Politecnica de Madrid and the Ministerio de Economia y Competitividad grant number TIN2014-55993-RMThe work of B.Magagna,E.Schultes,L.da Silva Santos and K.Jeffery is funded by the H2020-EU 824068The work of B.Magagna,E.Schultes and L.da Silva Santos is funded by the GO FAIR ISCO grant of the Dutch Ministry of Science and CultureThe work of G.Guizzardi is supported by the OCEAN Project(FUB).M.Courtot received funding from the I
文摘The FAIR principles have been widely cited,endorsed and adopted by a broad range of stakeholders since their publication in 2016.By intention,the 15 FAIR guiding principles do not dictate specific technological implementations,but provide guidance for improving Findability,Accessibility,Interoperability and Reusability of digital resources.This has likely contributed to the broad adoption of the FAIR principles,because individual stakeholder communities can implement their own FAIR solutions.However,it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations.Thus,while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways,for true interoperability we need to support convergence in implementation choices that are widely accessible and(re)-usable.We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible,robust,widespread and consistent FAIR implementations.Any self-identified stakeholder community may either choose to reuse solutions from existing implementations,or when they spot a gap,accept the challenge to create the needed solution,which,ideally,can be used again by other communities in the future.Here,we provide interpretations and implementation considerations(choices and challenges)for each FAIR principle.
文摘In natural environments,plants are exposed to diverse microbiota that they interact with in complex ways.While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants,many microbes and microbial communities can have substantial beneficial effects on their plant host.Such beneficial effects include improved acquisition of nutrients,accelerated growth,resilience against pathogens,and improved resistance against abiotic stress conditions such as heat,drought,and salinity.However,the beneficial effects of bacterial strains or consortia on their host are often cultivar and species specific,posing an obstacle to their general application.Remarkably,many of the signals that trigger plant immune responses are molecularly highly similar and often identical in pathogenic and beneficial microbes.Thus,it is unclear what determines the outcome of a particular microbe-host interaction and which factors enable plants to distinguish beneficials from pathogens.To unravel the complex network of genetic,microbial,and metabolic interactions,including the signaling events mediating microbe-host interactions,comprehensive quantitative systems biology approaches will be needed.
文摘Two surveys were conducted to investigate weed vegetation in a 153-hm^2 sampling area of summer crop fields from Anhui Province, China, through visual scoring of the level of weed infestation compared with summer crops on a seven-class scale. In total, 155 sampling sites were selected in the field based on crops, tillage, rotation systems, geographical regions, and soil types across the province. Data on weed communities and environmental factors were collected and analyzed through principal component analysis (PCA) and canonical correspondence analysis (CCA), and the output was interpreted ecologically. Results showed that the main factors influencing the structure and distribution of weed communities in summer crop fields were the soil submersion period, latitude, and soil type and pH. The CCA indicated a significant relationship between weed dominance and soil submersion duration, latitude, and soil pH. From the result of the PCA and CCA ordination, the 155 sampling sites could be divided into three groups based on geographic and floristic composition, as well as weed abundance. The southern dry land group, which was characterized by a double-cropping system in the hilly regions of southern and central Anhui Province with a continuous summer crop and an autumn dry land crop, was dominated by Galium aparine Linn. var. tenerum (Gren. et Godr) Robb., Avenafatua L., and Veronica persica Poir. The northern dry land group, which had the same cropping system as the southern dry land group, was dominated by G. aparine var. tenerum, Galium tricorne Stokes, Descurainia sophia (L.) Schur., and Lithospermum arvense L. in the North Anhui Province, China. These two dry land groups could be combined into one large dry land group, in which the Galium weed vegetation type dominated. The third group was the paddy soil group, which was characterized by a continu- ous summer crop and double- or triple-cropping systems of rice, and prevailed in the south and central areas of Anhui Province; Alopecurus aequalis Sobo