Most formation approaches of autonomous underwater vehicles(AUVs)focus on the control techniques,ignoring the influence of underwater channel.This paper is concerned with a communication-aware formation issue for AUVs...Most formation approaches of autonomous underwater vehicles(AUVs)focus on the control techniques,ignoring the influence of underwater channel.This paper is concerned with a communication-aware formation issue for AUVs,subject to model uncertainty and fading channel.An integral reinforcement learning(IRL)based estimator is designed to calculate the probabilistic channel parameters,wherein the multivariate probabilistic collocation method with orthogonal fractional factorial design(M-PCM-OFFD)is employed to evaluate the uncertain channel measurements.With the estimated signal-to-noise ratio(SNR),we employ the IRL and M-PCM-OFFD to develop a saturated formation controller for AUVs,dealing with uncertain dynamics and current parameters.For the proposed formation approach,an integrated optimization solution is presented to make a balance between formation stability and communication efficiency.Main innovations lie in three aspects:1)Construct an integrated communication and control optimization framework;2)Design an IRL-based channel prediction estimator;3)Develop an IRL-based formation controller with M-PCM-OFFD.Finally,simulation results show that the formation approach can avoid local optimum estimation,improve the channel efficiency,and relax the dependence of AUV model parameters.展开更多
Previous work mostly employs an ideal system model that assumes fully connected processors and concurrent communication, which leads to inaccurate and inegicient schedule results. In this paper, a new scheduling model...Previous work mostly employs an ideal system model that assumes fully connected processors and concurrent communication, which leads to inaccurate and inegicient schedule results. In this paper, a new scheduling model which integrates the communication awareness was proposed. Then, a novel scheduling algorithm based on list heuristic was put forward for the new model, which can produce optimal schedule by serializing the communications edges. Experimental results show that the accuracy and efficiency of the new model and algorithm are significantly improved.展开更多
基金supported in part by the National Natural Science Foundation of China(62222314,61973263,61873345,62033011)the Youth Talent Program of Hebei(BJ2020031)+2 种基金the Distinguished Young Foundation of Hebei Province(F2022203001)the Central Guidance Local Foundation of Hebei Province(226Z3201G)the Three-Three-Three Foundation of Hebei Province(C20221019)。
文摘Most formation approaches of autonomous underwater vehicles(AUVs)focus on the control techniques,ignoring the influence of underwater channel.This paper is concerned with a communication-aware formation issue for AUVs,subject to model uncertainty and fading channel.An integral reinforcement learning(IRL)based estimator is designed to calculate the probabilistic channel parameters,wherein the multivariate probabilistic collocation method with orthogonal fractional factorial design(M-PCM-OFFD)is employed to evaluate the uncertain channel measurements.With the estimated signal-to-noise ratio(SNR),we employ the IRL and M-PCM-OFFD to develop a saturated formation controller for AUVs,dealing with uncertain dynamics and current parameters.For the proposed formation approach,an integrated optimization solution is presented to make a balance between formation stability and communication efficiency.Main innovations lie in three aspects:1)Construct an integrated communication and control optimization framework;2)Design an IRL-based channel prediction estimator;3)Develop an IRL-based formation controller with M-PCM-OFFD.Finally,simulation results show that the formation approach can avoid local optimum estimation,improve the channel efficiency,and relax the dependence of AUV model parameters.
基金the National Natural Science Foundation of China(No60503048,60672059)the National High Technology Research and Development Program of China(No2006AA01Z233)
文摘Previous work mostly employs an ideal system model that assumes fully connected processors and concurrent communication, which leads to inaccurate and inegicient schedule results. In this paper, a new scheduling model which integrates the communication awareness was proposed. Then, a novel scheduling algorithm based on list heuristic was put forward for the new model, which can produce optimal schedule by serializing the communications edges. Experimental results show that the accuracy and efficiency of the new model and algorithm are significantly improved.