期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于PCA与RBF的建筑能耗预测建模 被引量:11
1
作者 戴坤成 王贵评 赵超 《福州大学学报(自然科学版)》 CAS 北大核心 2015年第4期512-516,共5页
由于建筑能耗因子间存在非线性和高度冗余特性,传统预测方法很难消除数据之间冗余和捕捉非线性特征,导致预测精度较低.为了提高建筑能耗预测精度,提出一种将主成分分析(principal component analysis,PCA)和径向基函数(radial basic fun... 由于建筑能耗因子间存在非线性和高度冗余特性,传统预测方法很难消除数据之间冗余和捕捉非线性特征,导致预测精度较低.为了提高建筑能耗预测精度,提出一种将主成分分析(principal component analysis,PCA)和径向基函数(radial basic function,RBF)神经网络相结合的建筑能耗预测方法(PCA-RBF).利用PCA消除建筑能耗高维变量数据的相关性,并按累积贡献率提取主成分,将主成分作为RBF神经网络的输入进行训练学习.通过PCA避免了模型过多的输入导致的训练耗时长及预测精度较低的不足.通过将PCA-RBF模型方法应用于某办公建筑能耗的预测中,并与RBF神经网络及BP神经网络模型相比,实验结果表明PCARBF模型方法能有效提高建筑能耗预测精度. 展开更多
关键词 建筑能耗 主成分分析 RBF神经网络 正交试验 组合预测
原文传递
基于WNN-GNN-SVM组合算法的变压器油色谱时间序列预测模型 被引量:17
2
作者 张施令 姚强 《电力自动化设备》 EI CSCD 北大核心 2018年第9期155-161,共7页
分析了小波神经网络(WNN)、灰色神经网络(GNN)、支持向量机(SVM)预测方法的原理,利用粒子群优化(PSO)算法对这3种基本预测方法进行了结构参数优化。将WNN、GNN、SVM与PSO-BP算法进行组合,推导得出了组合预测模型最优权系数的计算方法,... 分析了小波神经网络(WNN)、灰色神经网络(GNN)、支持向量机(SVM)预测方法的原理,利用粒子群优化(PSO)算法对这3种基本预测方法进行了结构参数优化。将WNN、GNN、SVM与PSO-BP算法进行组合,推导得出了组合预测模型最优权系数的计算方法,并优化了组合预测模型拓扑结构参数。算例分析结果表明:经过PSO算法优化后,WNN、GNN、SVM预测模型的预测精度得到了提高,其组合模型较单一模型有更高的预测精度。 展开更多
关键词 电力变压器 DGA PSO-BP算法 组合预测模型
下载PDF
基于核主成分分析与PSO-SVM的充填管道失效风险性分级评价模型 被引量:12
3
作者 张钦礼 王兢 王新民 《黄金科学技术》 CSCD 2017年第3期70-76,共7页
为了更精确地对充填管道失效风险性进行预测,建立核主成分分析与PSO-SVM相结合的评价模型。选取8项定量指标作为充填管道失效风险性的评价指标。统计15个矿山的样本数据,运用核主成分分析法对15个样本进行预处理,得出主成分,再利用改进... 为了更精确地对充填管道失效风险性进行预测,建立核主成分分析与PSO-SVM相结合的评价模型。选取8项定量指标作为充填管道失效风险性的评价指标。统计15个矿山的样本数据,运用核主成分分析法对15个样本进行预处理,得出主成分,再利用改进的SVM模型进行预测,进而得到更加精确的管道失效风险性预测结果。研究结果表明,所得到的实际预测结果与期望值之间的平均相对误差控制在5%以内。利用核主成分分析法与PSO-SVM相结合的评价模型具有精度高和运算速度快的优点,为充填管道失效风险预测提供了一种可靠的方法。 展开更多
关键词 失效风险性等级 充填管道 核主成分分析 支持向量机 组合预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部