Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock...Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.展开更多
The combination of paclitaxel(PTX)and doxorubicin(DOX)has been widely used in the clinic.However,it remains unsatisfied due to the generation of severe toxicity.Previously,we have successfully synthesized a prodrug PT...The combination of paclitaxel(PTX)and doxorubicin(DOX)has been widely used in the clinic.However,it remains unsatisfied due to the generation of severe toxicity.Previously,we have successfully synthesized a prodrug PTX-S-DOX(PSD).The prodrug displayed comparable in vitro cytotoxicity compared with the mixture of free PTX and DOX.Thus,we speculated that it could be promising to improve the anti-cancer effect and reduce adverse effects by improving the pharmacokinetics behavior of PSD and enhancing tumor accumulation.Due to the fact that copper ions(Cu2+)could coordinate with the anthracene nucleus of DOX,we speculate that the prodrug PSD could be actively loaded into liposomes by Cu2+gradient.Hence,we designed a remote loading liposomal formulation of PSD(PSD LPs)for combination chemotherapy.The prepared PSD LPs displayed extended blood circulation,improved tumor accumulation,and more significant anti-tumor efficacy compared with PSD NPs.Furthermore,PSD LPs exhibited reduced cardiotoxicity and kidney damage compared with the physical mixture of Taxol and Doxil,indicating better safety.Therefore,this novel nano-platform provides a strategy to deliver doxorubicin with other poorly soluble antineoplastic drugs for combination therapy with high efficacy and low toxicity.展开更多
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves...Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.展开更多
Under laser irradiation,photothermal therapy(PTT)effectively ablates tumors above 50℃.However,hyperthermia can cause additional damage due to the inevitable heat spread to surrounding healthy tissue.Herein,nanopartic...Under laser irradiation,photothermal therapy(PTT)effectively ablates tumors above 50℃.However,hyperthermia can cause additional damage due to the inevitable heat spread to surrounding healthy tissue.Herein,nanoparticles named as GI@P NPs were designed for enhanced PTT with heat shock protein 90(HSP90)inhibition at temperatures below 50℃to achieve optimal cancer therapy and avoid surrounding damage.GI@P NPs were done by co-loading Garcinia cambogia acid(GA)and photosensitizer IR783 in polymer PLG-g-mPEG to form a nanomedicine,where IR783 with excellent photoacoustic(PA)signal acted as an excellent photothermal therapeutic agent that converted the laser energy into heat to kill tumor cells,GA was used as antitumor drug for chemotherapy and an inhibitor of HSP90 to overcome the heat resistance of tumors for efficient cryo-photothermal therapy,and PLG-g-mPEG can encapsulate IR783 and GA to increase biocompatibility and accumulate effectively in the tumor.After GI@P NPs were injected into the mice,we could observe that the PA signals gradually increased in the tumor region and showed the strongest PA signals at 12 h.Under laser irradiation,the tumor temperature of the mice could raise to about 43.5℃,and the tumor was significantly inhibited after long-term monitoring by PA imaging.As a result,gentle PTT produced by GI@P NPs exhibited good antitumor effects at relatively low temperature and minimized nonspecific thermal damage to normal tissues.The GI@P NPs as nanomedicine enriched our understanding of various applications of polymeric carriers,especially in the biomedical field.展开更多
A model on the earthquake effects combination in wind resistant design of high-rise flexible structures is proposed in accordance with the probability method. Based on the Turkstra criteria, the stochastic characters ...A model on the earthquake effects combination in wind resistant design of high-rise flexible structures is proposed in accordance with the probability method. Based on the Turkstra criteria, the stochastic characters of wind velocity, earthquake ground acceleration and excitations occurrence probability are taken into account and then the combination of the earthquake effects in structure wind resistant design is analyzed with the convolution approach. The results indicate that as for the tall flexible buildings whose lateral force is governed by wind loading, the maximum lateral loads verification with respect to the wind resistant design combined with earthquake effects may be more unfavorable compared with that in terms of the earthquake resistant design involving wind effects.展开更多
基金Project(2014QNB31)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51674248)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.
基金supported by National Science and Technology Major Projects for Major New Drugs Innovation and Development(No.2017ZX09101-001-005,Beijing,China)Science and Technology Plan Project of Shenyang(No.18-400-4-08,Z17-5-064,China)the Career Development Program for Young and Middle-aged Teachers in Shenyang Pharmaceutical University(Shenyang,China)
文摘The combination of paclitaxel(PTX)and doxorubicin(DOX)has been widely used in the clinic.However,it remains unsatisfied due to the generation of severe toxicity.Previously,we have successfully synthesized a prodrug PTX-S-DOX(PSD).The prodrug displayed comparable in vitro cytotoxicity compared with the mixture of free PTX and DOX.Thus,we speculated that it could be promising to improve the anti-cancer effect and reduce adverse effects by improving the pharmacokinetics behavior of PSD and enhancing tumor accumulation.Due to the fact that copper ions(Cu2+)could coordinate with the anthracene nucleus of DOX,we speculate that the prodrug PSD could be actively loaded into liposomes by Cu2+gradient.Hence,we designed a remote loading liposomal formulation of PSD(PSD LPs)for combination chemotherapy.The prepared PSD LPs displayed extended blood circulation,improved tumor accumulation,and more significant anti-tumor efficacy compared with PSD NPs.Furthermore,PSD LPs exhibited reduced cardiotoxicity and kidney damage compared with the physical mixture of Taxol and Doxil,indicating better safety.Therefore,this novel nano-platform provides a strategy to deliver doxorubicin with other poorly soluble antineoplastic drugs for combination therapy with high efficacy and low toxicity.
基金This paper is financially supported by the National Natural Science Foundation of China(Grant Nos.52074263 and 52034007)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_2332).
文摘Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.
基金the National Natural Science Foundation of China(Nos.52173115,52073278,51925305 and 51873208)Jilin province science and technology development program(No.20200201103JC)Foundation of Department of Education of Jilin Province of China(No.JJKH20210828KJ).
文摘Under laser irradiation,photothermal therapy(PTT)effectively ablates tumors above 50℃.However,hyperthermia can cause additional damage due to the inevitable heat spread to surrounding healthy tissue.Herein,nanoparticles named as GI@P NPs were designed for enhanced PTT with heat shock protein 90(HSP90)inhibition at temperatures below 50℃to achieve optimal cancer therapy and avoid surrounding damage.GI@P NPs were done by co-loading Garcinia cambogia acid(GA)and photosensitizer IR783 in polymer PLG-g-mPEG to form a nanomedicine,where IR783 with excellent photoacoustic(PA)signal acted as an excellent photothermal therapeutic agent that converted the laser energy into heat to kill tumor cells,GA was used as antitumor drug for chemotherapy and an inhibitor of HSP90 to overcome the heat resistance of tumors for efficient cryo-photothermal therapy,and PLG-g-mPEG can encapsulate IR783 and GA to increase biocompatibility and accumulate effectively in the tumor.After GI@P NPs were injected into the mice,we could observe that the PA signals gradually increased in the tumor region and showed the strongest PA signals at 12 h.Under laser irradiation,the tumor temperature of the mice could raise to about 43.5℃,and the tumor was significantly inhibited after long-term monitoring by PA imaging.As a result,gentle PTT produced by GI@P NPs exhibited good antitumor effects at relatively low temperature and minimized nonspecific thermal damage to normal tissues.The GI@P NPs as nanomedicine enriched our understanding of various applications of polymeric carriers,especially in the biomedical field.
基金Project supported by the National Natural Science Foundation of China (No.50321803)
文摘A model on the earthquake effects combination in wind resistant design of high-rise flexible structures is proposed in accordance with the probability method. Based on the Turkstra criteria, the stochastic characters of wind velocity, earthquake ground acceleration and excitations occurrence probability are taken into account and then the combination of the earthquake effects in structure wind resistant design is analyzed with the convolution approach. The results indicate that as for the tall flexible buildings whose lateral force is governed by wind loading, the maximum lateral loads verification with respect to the wind resistant design combined with earthquake effects may be more unfavorable compared with that in terms of the earthquake resistant design involving wind effects.