Nanoparticles(NPs)can promote the column flotation process in mining industry.Nanoparticles'effects on column flotation process(copper recovery,grade and flotation rate constant)are assessed in Sarcheshmeh Copper ...Nanoparticles(NPs)can promote the column flotation process in mining industry.Nanoparticles'effects on column flotation process(copper recovery,grade and flotation rate constant)are assessed in Sarcheshmeh Copper Complex,Iran,through response surface methodology(RSM)optimization technique.The c-Al2O3,a-Fe2O3,SiO2,and TiO2 nanoparticles are selected for these experiments.A flotation rate constant is chosen as a response to assess the effect of nanoparticles on flotation in its kinetic sense.The process p H and nanoparticle dosage are selected as the influential parameters.Results obtained from RSM indicated that the maximum percentage of Cu recovery and grade is obtained at p H of 12 and nanoparticle dosage of 6 kg/t,through a-Fe2O3 and c-Al2O3 nanoparticles,respectively.Applying nanoparticles in particular c-Al2O3 and a-Fe2O3 increases the Cu recovery by 8–10%together with the grade by 3–6%in a significant manner.It is revealed that nanoparticles could effectively be applied in enhancing the flotation performance.展开更多
Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral proce...Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed m展开更多
Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and...Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and effective recovery of DNA from agarose gels with good yield and quality. Using a Sephadex resin filled spin column, DNA fragments of 500 bp to 6 kb in an agarose gel slice were easily recovered by a 2 min centrifugation. The recovery efficiencies were over 40% -50% and the eluted DNA can be used directly for downstream application, such as polymerase chain reactions (PCR) and restriction enzyme digestion. This method could also be used to recover large DNA fragment (48 kb) without degradation. The use of Sephadex helps to remove small molecular impurities from agarose and it also reduces the chance of clogging the column filter caused by direct contact with agarose.展开更多
基金The authors would like to extend their appreciation to the Sarcheshmeh Copper Complex management for providing the pilot plant Concentrator and R&D of this Complex and their financial support for this research.
文摘Nanoparticles(NPs)can promote the column flotation process in mining industry.Nanoparticles'effects on column flotation process(copper recovery,grade and flotation rate constant)are assessed in Sarcheshmeh Copper Complex,Iran,through response surface methodology(RSM)optimization technique.The c-Al2O3,a-Fe2O3,SiO2,and TiO2 nanoparticles are selected for these experiments.A flotation rate constant is chosen as a response to assess the effect of nanoparticles on flotation in its kinetic sense.The process p H and nanoparticle dosage are selected as the influential parameters.Results obtained from RSM indicated that the maximum percentage of Cu recovery and grade is obtained at p H of 12 and nanoparticle dosage of 6 kg/t,through a-Fe2O3 and c-Al2O3 nanoparticles,respectively.Applying nanoparticles in particular c-Al2O3 and a-Fe2O3 increases the Cu recovery by 8–10%together with the grade by 3–6%in a significant manner.It is revealed that nanoparticles could effectively be applied in enhancing the flotation performance.
基金the support of the Department of Research and Development of Sarcheshmeh copper plants for this research
文摘Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed m
文摘Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and effective recovery of DNA from agarose gels with good yield and quality. Using a Sephadex resin filled spin column, DNA fragments of 500 bp to 6 kb in an agarose gel slice were easily recovered by a 2 min centrifugation. The recovery efficiencies were over 40% -50% and the eluted DNA can be used directly for downstream application, such as polymerase chain reactions (PCR) and restriction enzyme digestion. This method could also be used to recover large DNA fragment (48 kb) without degradation. The use of Sephadex helps to remove small molecular impurities from agarose and it also reduces the chance of clogging the column filter caused by direct contact with agarose.